An agent architecture for expressive spatial knowledge and reasoning in land use modeling and simulations

Severin Vianey Tuekam Kakeu, Eric Fotsing, Eric Desire Kameni, Marcellin Julius Antonio Nkenlifack
{"title":"An agent architecture for expressive spatial knowledge and reasoning in land use modeling and simulations","authors":"Severin Vianey Tuekam Kakeu, Eric Fotsing, Eric Desire Kameni, Marcellin Julius Antonio Nkenlifack","doi":"10.1177/00375497241247040","DOIUrl":null,"url":null,"abstract":"This paper presents a new cognitive agent design approach integrating spatial knowledge representation and reasoning in agent-based modeling dedicated to land use simulations. A deep motivation for our agent-centric contribution is the ever-increasing development of spatially explicit agent simulation platforms. We build on this technological evolution and topology theory to endow the agent with human’s spatial representation and reasoning following a Belief–Desire–Intention architecture. A pilot implementation of the methodology with simulation experiments on a hunting model was carried out in GAMA platform to assess agent performances. Simulations display a consistent trend of animal population dynamics and also confirm a high model sensitivity to the integration of spatial knowledge and reasoning in agent-based models of human actor. These results demonstrate a successful implementation and the importance of spatial dimension in the expressive power and the validity of agent-based models. Future research efforts should therefore emphasize on designing human knowledge representation and incorporating learning abilities to improve models efficiency.","PeriodicalId":501452,"journal":{"name":"SIMULATION","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIMULATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00375497241247040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new cognitive agent design approach integrating spatial knowledge representation and reasoning in agent-based modeling dedicated to land use simulations. A deep motivation for our agent-centric contribution is the ever-increasing development of spatially explicit agent simulation platforms. We build on this technological evolution and topology theory to endow the agent with human’s spatial representation and reasoning following a Belief–Desire–Intention architecture. A pilot implementation of the methodology with simulation experiments on a hunting model was carried out in GAMA platform to assess agent performances. Simulations display a consistent trend of animal population dynamics and also confirm a high model sensitivity to the integration of spatial knowledge and reasoning in agent-based models of human actor. These results demonstrate a successful implementation and the importance of spatial dimension in the expressive power and the validity of agent-based models. Future research efforts should therefore emphasize on designing human knowledge representation and incorporating learning abilities to improve models efficiency.
土地利用建模和模拟中用于表达空间知识和推理的代理架构
本文介绍了一种新的认知代理设计方法,它将空间知识表征和推理整合到专门用于土地利用模拟的基于代理的建模中。我们以代理为中心所做贡献的一个深层动机是空间显式代理模拟平台的不断发展。我们在这一技术演进和拓扑理论的基础上,按照 "信念-愿望-意向 "架构,赋予代理以人类的空间表征和推理能力。我们在 GAMA 平台上对狩猎模型进行了模拟实验,以评估代理的性能。模拟显示了动物种群动态的一致趋势,同时也证实了基于代理的人类行动者模型对空间知识和推理的整合具有很高的模型灵敏度。这些结果表明了空间维度在基于代理的模型的表现力和有效性方面的成功实施和重要性。因此,未来的研究工作应侧重于设计人类知识表征,并结合学习能力来提高模型的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信