Sombor Index and Sombor Spectrum of Cozero-Divisor Graph of $$\mathbb Z_n$$

IF 1.1 3区 数学 Q1 MATHEMATICS
M. Anwar, M. R. Mozumder, M. Rashid, M. A. Raza
{"title":"Sombor Index and Sombor Spectrum of Cozero-Divisor Graph of $$\\mathbb Z_n$$","authors":"M. Anwar, M. R. Mozumder, M. Rashid, M. A. Raza","doi":"10.1007/s00025-024-02174-8","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathscr {Z}(\\mathscr {R})'\\)</span> be the set of all non-unit and non-zero elements of ring <span>\\(\\mathscr {R}\\)</span>, a commutative ring with identity <span>\\(1\\ne 0\\)</span>. The cozero-divisor graph of <span>\\(\\mathscr {R}\\)</span>, denoted by the notation <span>\\({\\Gamma '(\\mathscr {R})}\\)</span>, is an undirected graph with vertex set <span>\\(\\mathscr {Z}(\\mathscr {R})'\\)</span>. Any two distinct vertices <i>w</i> and <i>z</i> are adjacent if and only if <span>\\(w\\notin z\\mathscr {R}\\)</span> and <span>\\(z\\notin w\\mathscr {R}\\)</span>, where <span>\\(q\\mathscr {R}\\)</span> is the ideal generated by the element <i>q</i> in <span>\\(\\mathscr {R}\\)</span>. In this article, we evaluate the Sombor index of the graphs <span>\\({\\Gamma '(\\mathbb Z_n)}\\)</span> for different values of <i>n</i>. Additionally, we compute <span>\\({\\Gamma '(\\mathbb Z_{n})}\\)</span>, the cozero-divisor graph Sombor spectrum.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02174-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathscr {Z}(\mathscr {R})'\) be the set of all non-unit and non-zero elements of ring \(\mathscr {R}\), a commutative ring with identity \(1\ne 0\). The cozero-divisor graph of \(\mathscr {R}\), denoted by the notation \({\Gamma '(\mathscr {R})}\), is an undirected graph with vertex set \(\mathscr {Z}(\mathscr {R})'\). Any two distinct vertices w and z are adjacent if and only if \(w\notin z\mathscr {R}\) and \(z\notin w\mathscr {R}\), where \(q\mathscr {R}\) is the ideal generated by the element q in \(\mathscr {R}\). In this article, we evaluate the Sombor index of the graphs \({\Gamma '(\mathbb Z_n)}\) for different values of n. Additionally, we compute \({\Gamma '(\mathbb Z_{n})}\), the cozero-divisor graph Sombor spectrum.

$$\mathbb Z_n$$ Cozero-Divisor Graph 的松博指数和松博谱
让 \(\mathscr {Z}(\mathscr {R})'\) 是环\(\mathscr {R}\)的所有非单位元素和非零元素的集合,环\(\mathscr {R}\)是一个具有同一性的交换环\(1\ne 0\)。\(\mathscr {R}\)的零因子图,用符号\({\Gamma '(\mathscr {R})}\)表示,是一个具有顶点集\(\mathscr {Z}(\mathscr {R})'\)的无向图。任何两个不同的顶点w和z都是相邻的,当且仅当 \(w\notin z\mathscr {R}\) 和 \(z\notin w\mathscr {R}\) 时,其中 \(q\mathscr {R}\) 是元素q在 \(\mathscr {R}\) 中产生的理想。在本文中,我们评估了不同 n 值的图\({\Gamma '(\mathbb Z_n)}\) 的松博指数。此外,我们还计算了 \({\Gamma '(\mathbb Z_{n})}\), 即 cozero-divisor 图的 Sombor 谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信