{"title":"A HOMEMADE SEMIAUTOMATIC GRAPHITIZATION DEVICE FOR AMS 14C DATING AT NTUAMS LAB","authors":"Tzu-Tsen Shen, Hong-Chun Li, Rick Qiu","doi":"10.1017/rdc.2024.48","DOIUrl":null,"url":null,"abstract":"<p>A low-cost and computer-controlled graphitization system connected to an elemental analyzer (EA) has been designed and built at the NTUAMS Lab. This semiautomatic system equips 6-unit reactors for the graphitization of CO<span>2</span> with H<span>2</span> on the iron catalyst. The entire procedure takes about 7 hours for iron conditioning, sample combustion and loading, and graphitization. The system can produce good-quality graphite for samples containing 0.5–1.6 mg carbon mass, with the pressure yield of graphitization ranging from 57.7% to 87.1%. The average values of OXI and OXII agree well with the consensus value, but the result of ANU sucrose was observed to be slightly higher than the reported one. The background samples of anthracite over ten months yielded an average of 0.38±0.10 pMC (n=21) corresponding to a <span>14</span>C age of 45 kyr BP. Intercomparison samples L and M of FIRI exhibit that the measured <span>14</span>C ages are almost identical to the consensus values and have a small spread in these values. The system has been carrying out graphitization for total organic carbon (TOC) of peat samples, and providing a more efficient and convenient way for AMS <span>14</span>C dating.</p>","PeriodicalId":21020,"journal":{"name":"Radiocarbon","volume":"79 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiocarbon","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/rdc.2024.48","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A low-cost and computer-controlled graphitization system connected to an elemental analyzer (EA) has been designed and built at the NTUAMS Lab. This semiautomatic system equips 6-unit reactors for the graphitization of CO2 with H2 on the iron catalyst. The entire procedure takes about 7 hours for iron conditioning, sample combustion and loading, and graphitization. The system can produce good-quality graphite for samples containing 0.5–1.6 mg carbon mass, with the pressure yield of graphitization ranging from 57.7% to 87.1%. The average values of OXI and OXII agree well with the consensus value, but the result of ANU sucrose was observed to be slightly higher than the reported one. The background samples of anthracite over ten months yielded an average of 0.38±0.10 pMC (n=21) corresponding to a 14C age of 45 kyr BP. Intercomparison samples L and M of FIRI exhibit that the measured 14C ages are almost identical to the consensus values and have a small spread in these values. The system has been carrying out graphitization for total organic carbon (TOC) of peat samples, and providing a more efficient and convenient way for AMS 14C dating.
期刊介绍:
Radiocarbon serves as the leading international journal for technical and interpretive articles, date lists, and advancements in 14C and other radioisotopes relevant to archaeological, geophysical, oceanographic, and related dating methods. Established in 1959, it has published numerous seminal works and hosts the triennial International Radiocarbon Conference proceedings. The journal also features occasional special issues. Submissions encompass regular articles such as research reports, technical descriptions, and date lists, along with comments, letters to the editor, book reviews, and laboratory lists.