Constrained Neural Networks for Interpretable Heuristic Creation to Optimise Computer Algebra Systems

Dorian Florescu, Matthew England
{"title":"Constrained Neural Networks for Interpretable Heuristic Creation to Optimise Computer Algebra Systems","authors":"Dorian Florescu, Matthew England","doi":"arxiv-2404.17508","DOIUrl":null,"url":null,"abstract":"We present a new methodology for utilising machine learning technology in\nsymbolic computation research. We explain how a well known human-designed\nheuristic to make the choice of variable ordering in cylindrical algebraic\ndecomposition may be represented as a constrained neural network. This allows\nus to then use machine learning methods to further optimise the heuristic,\nleading to new networks of similar size, representing new heuristics of similar\ncomplexity as the original human-designed one. We present this as a form of\nante-hoc explainability for use in computer algebra development.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.17508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new methodology for utilising machine learning technology in symbolic computation research. We explain how a well known human-designed heuristic to make the choice of variable ordering in cylindrical algebraic decomposition may be represented as a constrained neural network. This allows us to then use machine learning methods to further optimise the heuristic, leading to new networks of similar size, representing new heuristics of similar complexity as the original human-designed one. We present this as a form of ante-hoc explainability for use in computer algebra development.
用于优化计算机代数系统的可解释启发式创建的约束神经网络
我们介绍了一种在符号计算研究中利用机器学习技术的新方法。我们解释了在圆柱代数分解中,如何将人类设计的用于选择变量排序的著名启发式表示为受约束的神经网络。这样,我们就可以利用机器学习方法进一步优化启发式,从而产生类似大小的新网络,代表与最初人类设计的启发式具有类似复杂性的新启发式。我们将此作为一种临时可解释性形式,用于计算机代数的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信