Chanyuan Wang, Raghda A. M. Attia, Suleman H. Alfalqi, Jameel F. Alzaidi, Mostafa M. A. Khater
{"title":"Stability analysis and conserved quantities of analytic nonlinear wave solutions in multi-dimensional fractional systems","authors":"Chanyuan Wang, Raghda A. M. Attia, Suleman H. Alfalqi, Jameel F. Alzaidi, Mostafa M. A. Khater","doi":"10.1142/s0217984924503688","DOIUrl":null,"url":null,"abstract":"<p>The (3+1)-dimensional generalized nonlinear fractional Konopelchenko–Dubrovsky–Kaup–Kupershmidt <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>𝔾</mi><mi>𝔽</mi><mi>𝕂</mi><mi>𝔻</mi><mi>𝕂</mi><mi>𝕂</mi><mo stretchy=\"false\">)</mo></math></span><span></span> model represents the propagation and interaction of nonlinear waves in complex multi-dimensional physical media characterized by anomalous dispersion and dissipation phenomena. By incorporating fractional derivatives, this model introduces non-locality and memory effects into the classical <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi><mi>𝔻</mi><mi>𝕂</mi><mi>𝕂</mi></math></span><span></span> equations, commonly utilized in phenomena such as shallow water waves, nonlinear optics, and plasma physics. The fractional approach enhances mathematical representations, allowing for a more realistic depiction of the intricate behaviors observed in numerous modern physical systems. This study focuses on the development of accurate and efficient numerical techniques tailored for the computationally demanding <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝔾</mi><mi>𝔽</mi><mi>𝕂</mi><mi>𝔻</mi><mi>𝕂</mi><mi>𝕂</mi></math></span><span></span> model, leveraging the Khater II and generalized rational approximation methods. These methodologies facilitate stable time-integration, effectively addressing the model’s stiffness and multi-dimensional nature. Through numerical analysis, insights into the stability and convergence of the algorithms are gained. Simulations conducted validate the performance of these methods against established solutions while also uncovering novel capabilities for exploring complex wave dynamics in scenarios involving complete fractional formulations. The findings underscore the potential of integrating fractional calculus into higher-dimensional nonlinear partial differential equations, offering a promising avenue for advancing the modeling and computational analysis of complex wave phenomena across a spectrum of contemporary physical disciplines.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"6 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503688","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The (3+1)-dimensional generalized nonlinear fractional Konopelchenko–Dubrovsky–Kaup–Kupershmidt model represents the propagation and interaction of nonlinear waves in complex multi-dimensional physical media characterized by anomalous dispersion and dissipation phenomena. By incorporating fractional derivatives, this model introduces non-locality and memory effects into the classical equations, commonly utilized in phenomena such as shallow water waves, nonlinear optics, and plasma physics. The fractional approach enhances mathematical representations, allowing for a more realistic depiction of the intricate behaviors observed in numerous modern physical systems. This study focuses on the development of accurate and efficient numerical techniques tailored for the computationally demanding model, leveraging the Khater II and generalized rational approximation methods. These methodologies facilitate stable time-integration, effectively addressing the model’s stiffness and multi-dimensional nature. Through numerical analysis, insights into the stability and convergence of the algorithms are gained. Simulations conducted validate the performance of these methods against established solutions while also uncovering novel capabilities for exploring complex wave dynamics in scenarios involving complete fractional formulations. The findings underscore the potential of integrating fractional calculus into higher-dimensional nonlinear partial differential equations, offering a promising avenue for advancing the modeling and computational analysis of complex wave phenomena across a spectrum of contemporary physical disciplines.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.