Existence and regularity results for a class of singular parabolic problems with $$L^1$$ data

Ida de Bonis, Maria Michaela Porzio
{"title":"Existence and regularity results for a class of singular parabolic problems with $$L^1$$ data","authors":"Ida de Bonis, Maria Michaela Porzio","doi":"10.1007/s00030-024-00935-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove existence and regularity results for a class of parabolic problems with irregular initial data and lower order terms singular with respect to the solution. We prove that, even if the initial datum is not bounded but only in <span>\\(L^1(\\Omega )\\)</span>, there exists a solution that “instantly” becomes bounded. Moreover we study the behavior in time of these solutions showing that this class of problems admits global solutions which all have the same behavior in time independently of the size of the initial data.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00935-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove existence and regularity results for a class of parabolic problems with irregular initial data and lower order terms singular with respect to the solution. We prove that, even if the initial datum is not bounded but only in \(L^1(\Omega )\), there exists a solution that “instantly” becomes bounded. Moreover we study the behavior in time of these solutions showing that this class of problems admits global solutions which all have the same behavior in time independently of the size of the initial data.

一类具有 $L^1$$ 数据的奇异抛物问题的存在性和正则性结果
在本文中,我们证明了一类抛物线问题的存在性和正则性结果,这些问题具有不规则的初始数据和与解有关的奇异的低阶项。我们证明,即使初始数据不是有界的(仅在 \(L^1(\Omega)\)中),也存在 "瞬间 "变为有界的解。此外,我们还研究了这些解在时间上的行为,结果表明这一类问题的全局解在时间上都具有相同的行为,而与初始数据的大小无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信