{"title":"Slenderness limit for reinforced ultra-high-performance concrete columns","authors":"Qiwu Wang, Fei Peng, Zhi Fang","doi":"10.1177/13694332241252274","DOIUrl":null,"url":null,"abstract":"The use of ultra-high-performance concrete (UHPC) allows for much smaller cross-sections compared to conventional reinforced concrete columns, which may make reinforced UHPC (R-UHPC) columns more susceptible to slenderness effects. Currently, there is no guideline in design standards for the slenderness limit of R-UHPC columns. This paper, therefore, attempts to develop a design provision for determining the slenderness limit of R-UHPC columns. Firstly, a numerical analytical model was proposed for predicting the load-deflection of R-UHPC columns under eccentric loading, which was validated by comparing its predictions with available experimental results from the available literature. Based on the validated model, a parametric study was then conducted to determine the key parameters affecting the slenderness limit of R-UHPC columns. It was found that the slenderness limit corresponding to the 5% strength reduction was sensitive to the ultimate compressive strain of UHPC, the tensile strength of UHPC, and the reinforcement ratio. On this basis, a design equation for the slenderness limit of R-UHPC columns in single curvature was statistically derived. Additionally, the slenderness limit for R-UHPC columns in non-sway frames was also proposed in a convenient form for design procedures.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":"33 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241252274","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of ultra-high-performance concrete (UHPC) allows for much smaller cross-sections compared to conventional reinforced concrete columns, which may make reinforced UHPC (R-UHPC) columns more susceptible to slenderness effects. Currently, there is no guideline in design standards for the slenderness limit of R-UHPC columns. This paper, therefore, attempts to develop a design provision for determining the slenderness limit of R-UHPC columns. Firstly, a numerical analytical model was proposed for predicting the load-deflection of R-UHPC columns under eccentric loading, which was validated by comparing its predictions with available experimental results from the available literature. Based on the validated model, a parametric study was then conducted to determine the key parameters affecting the slenderness limit of R-UHPC columns. It was found that the slenderness limit corresponding to the 5% strength reduction was sensitive to the ultimate compressive strain of UHPC, the tensile strength of UHPC, and the reinforcement ratio. On this basis, a design equation for the slenderness limit of R-UHPC columns in single curvature was statistically derived. Additionally, the slenderness limit for R-UHPC columns in non-sway frames was also proposed in a convenient form for design procedures.
期刊介绍:
Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.