Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection

IF 1.2 4区 工程技术 Q3 ACOUSTICS
Zhang Kun, Li Hongren, Wang Xin, Xie Daxing, Sun Xiaokai
{"title":"Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection","authors":"Zhang Kun, Li Hongren, Wang Xin, Xie Daxing, Sun Xiaokai","doi":"10.1155/2024/3374107","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE), DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by 39.15%). The model excels particularly in feature extraction, denoising, and early fault detection, offering a proactive strategy for maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efficiency with a reduction in the convergence rounds by 66% and overall training times by 34.13%. The study concludes that DMS-SVDD presents a robust and efficient solution for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could explore additional refinements and applications of the DMS-SVDD model across diverse industrial contexts.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":"125 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/3374107","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE), DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by 39.15%). The model excels particularly in feature extraction, denoising, and early fault detection, offering a proactive strategy for maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efficiency with a reduction in the convergence rounds by 66% and overall training times by 34.13%. The study concludes that DMS-SVDD presents a robust and efficient solution for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could explore additional refinements and applications of the DMS-SVDD model across diverse industrial contexts.
用于增强型重型燃气涡轮发电机组异常检测的深度多尺度软阈值支持向量数据描述
本文介绍了一种创新方法--深度多尺度软阈值支持向量数据描述(DMS-SVDD),该方法专为重型燃气涡轮发电机组(GENSET)的异常检测和故障预测而设计。该模型将支持向量数据描述(SVDD)与深度自动编码器骨干网络框架相结合,将多尺度卷积神经网络(M)和软阈值激活网络(S)集成到深度-SVDD 框架中。与单类支持向量机(OCSVM)和自动编码器(AE)等传统方法相比,DMS-SVDD 在准确率(提高了 22.94%)、召回率(提高了 32%)、F1 分数(提高了 12.02%)和平滑度(提高了 39.15%)方面都有所提高。该模型在特征提取、去噪和早期故障检测方面表现尤为突出,为维护工作提供了一种前瞻性策略。此外,DMS-SVDD 还提高了训练效率,收敛轮数减少了 66%,总体训练时间减少了 34.13%。研究得出结论,DMS-SVDD 为燃气轮机异常检测提供了一种稳健高效的解决方案,在涡轮机维护决策支持方面具有实际优势。未来的研究可以探索 DMS-SVDD 模型在不同工业环境中的进一步完善和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信