Ideal Turbulence as a Kind of Disturbed Chaos: Brief Essay

IF 0.5 4区 数学 Q3 MATHEMATICS
Olena Romanenko, Abdyvali Akbergenov
{"title":"Ideal Turbulence as a Kind of Disturbed Chaos: Brief Essay","authors":"Olena Romanenko, Abdyvali Akbergenov","doi":"10.1007/s11253-024-02297-9","DOIUrl":null,"url":null,"abstract":"<p>We outline key points of the concept of ideal turbulence offering novel scenarios for distributed chaos based not on the geometric-dynamical complexity of the attractor but on the extremely complex spatial structure of elements of the attractor. Ideal turbulence is observed in idealized (without internal resistance) models of various processes related to electromagnetic or acoustic oscillations. This idealization significantly simplifies the analysis and, at the same time, in many cases, provides a quite adequate description of real processes.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02297-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We outline key points of the concept of ideal turbulence offering novel scenarios for distributed chaos based not on the geometric-dynamical complexity of the attractor but on the extremely complex spatial structure of elements of the attractor. Ideal turbulence is observed in idealized (without internal resistance) models of various processes related to electromagnetic or acoustic oscillations. This idealization significantly simplifies the analysis and, at the same time, in many cases, provides a quite adequate description of real processes.

作为一种受扰混沌的理想湍流:简论
我们概述了理想湍流概念的要点,它不是基于吸引子的几何-动力学复杂性,而是基于吸引子元素极其复杂的空间结构,为分布式混沌提供了新的方案。在与电磁或声学振荡有关的各种过程的理想化(无内阻)模型中,可以观察到理想湍流。这种理想化大大简化了分析,同时,在许多情况下,对实际过程提供了相当充分的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信