On algebraically closed fields with a distinguished subfield

IF 0.8 2区 数学 Q2 MATHEMATICS
Christian d’Elbée, Itay Kaplan, Leor Neuhauser
{"title":"On algebraically closed fields with a distinguished subfield","authors":"Christian d’Elbée, Itay Kaplan, Leor Neuhauser","doi":"10.1007/s11856-024-2621-1","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the model-theoretic study of pairs (<i>K, F</i>) where <i>K</i> is an algebraically closed field and <i>F</i> is a distinguished subfield of <i>K</i> allowing extra structure. We study the basic model-theoretic properties of those pairs, such as quantifier elimination, model-completeness and saturated models. We also prove some preservation results of classification-theoretic notions such as stability, simplicity, NSOP<sub>1</sub>, and NIP. As an application, we conclude that a PAC field is NSOP<sub>1</sub> iff its absolute Galois group is (as a profinite group).</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2621-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the model-theoretic study of pairs (K, F) where K is an algebraically closed field and F is a distinguished subfield of K allowing extra structure. We study the basic model-theoretic properties of those pairs, such as quantifier elimination, model-completeness and saturated models. We also prove some preservation results of classification-theoretic notions such as stability, simplicity, NSOP1, and NIP. As an application, we conclude that a PAC field is NSOP1 iff its absolute Galois group is (as a profinite group).

关于有区分子域的代数闭域
本文关注对(K, F)的模型理论研究,其中 K 是一个代数闭域,F 是允许额外结构的 K 的一个区分子域。我们研究这些模型对的基本模型理论性质,如量子消元、模型完备性和饱和模型。我们还证明了分类理论概念的一些保存结果,如稳定性、简单性、NSOP1 和 NIP。作为应用,我们得出结论:如果一个 PAC 域的绝对伽罗瓦群是 NSOP1(作为一个无穷群),那么这个 PAC 域就是 NSOP1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信