A topological insight into the polar involution of convex sets

IF 0.8 2区 数学 Q2 MATHEMATICS
Luisa F. Higueras-Montaño, Natalia Jonard-Pérez
{"title":"A topological insight into the polar involution of convex sets","authors":"Luisa F. Higueras-Montaño, Natalia Jonard-Pérez","doi":"10.1007/s11856-024-2622-0","DOIUrl":null,"url":null,"abstract":"<p>Denote by <span>\\({\\cal K}_0^n\\)</span> the family of all closed convex sets <i>A</i> ⊂ ℝ<sup><i>n</i></sup> containing the origin 0 ∈ ℝ<sup><i>n</i></sup>. For <span>\\(A \\in {\\cal K}_0^n\\)</span>, its polar set is denoted by <i>A</i>°. In this paper, we investigate the topological nature of the polar mapping <i>A</i> → <i>A</i>° on <span>\\(({\\cal K}_0^n,{d_{AW}})\\)</span>, where <i>d</i><sub><i>AW</i></sub> denotes the Attouch–Wets metric. We prove that <span>\\(({\\cal K}_0^n,{d_{AW}})\\)</span> is homeomorphic to the Hilbert cube <span>\\(Q = \\prod\\nolimits_{i = 1}^\\infty {[ - 1,1]} \\)</span> and the polar mapping is topologically conjugate with the standard based-free involution <i>σ</i>: <i>Q</i> → <i>Q</i>, defined by <i>σ</i>(<i>x</i>) = −<i>x</i> for all <i>x</i> ∈ <i>Q</i>. We also prove that among the inclusion-reversing involutions on <span>\\({\\cal K}_0^n\\)</span> (also called dualities), those and only those with a unique fixed point are topologically conjugate with the polar mapping, and they can be characterized as all the maps <span>\\(f:{\\cal K}_0^n \\to {\\cal K}_0^n\\)</span> of the form <i>f</i>(<i>A</i>) = <i>T</i>(<i>A</i>°), with <i>T</i> a positive-definite linear isomorphism of ℝ<sup><i>n</i></sup>.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2622-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Denote by \({\cal K}_0^n\) the family of all closed convex sets A ⊂ ℝn containing the origin 0 ∈ ℝn. For \(A \in {\cal K}_0^n\), its polar set is denoted by A°. In this paper, we investigate the topological nature of the polar mapping AA° on \(({\cal K}_0^n,{d_{AW}})\), where dAW denotes the Attouch–Wets metric. We prove that \(({\cal K}_0^n,{d_{AW}})\) is homeomorphic to the Hilbert cube \(Q = \prod\nolimits_{i = 1}^\infty {[ - 1,1]} \) and the polar mapping is topologically conjugate with the standard based-free involution σ: QQ, defined by σ(x) = −x for all xQ. We also prove that among the inclusion-reversing involutions on \({\cal K}_0^n\) (also called dualities), those and only those with a unique fixed point are topologically conjugate with the polar mapping, and they can be characterized as all the maps \(f:{\cal K}_0^n \to {\cal K}_0^n\) of the form f(A) = T(A°), with T a positive-definite linear isomorphism of ℝn.

凸集极性内卷的拓扑学启示
用 \({\cal K}_0^n\) 表示包含原点 0∈ ℝn 的所有闭凸集 A ⊂ ℝn 的族。对于 \(A \in {\cal K}_0^n\), 其极坐标集用 A° 表示。本文将研究极映射 A → A° 在 \(({\cal K}_0^n,{d_{AW}})\) 上的拓扑性质,其中 dAW 表示 Attouch-Wets 度量。我们证明\(({\cal K}_0^n,{d_{AW}})\) 与希尔伯特立方体 \(Q = \prod\nolimits_{i = 1}^\infty {[ - 1,1]} \) 是同构的,并且极性映射与标准的无基内卷 σ 在拓扑上是共轭的:Q → Q,对所有 x∈ Q 定义为 σ(x) = -x。我们还证明了在\({\cal K}_0^n\) 上的包含-反转卷积(也称为对偶性)中,那些且只有那些有唯一定点的卷积与极映射拓扑共轭,它们可以被描述为形式为 f(A) = T(A°) 的所有映射 \(f:{\cal K}_0^n\to {\cal K}_0^n\),其中 T 是ℝn 的正定线性同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信