Nguyen Thi Loan, Van Anh Nguyen Thi, Tran Van Thuy, Pham Truong Xuan
{"title":"Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces","authors":"Nguyen Thi Loan, Van Anh Nguyen Thi, Tran Van Thuy, Pham Truong Xuan","doi":"10.1002/mana.202300311","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mspace></mspace>\n <mtext>where</mtext>\n <mspace></mspace>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {R}^n\\,\\,(\\hbox{ where }n \\geqslant 4)$</annotation>\n </semantics></math> and real hyperbolic space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mtext>where</mtext>\n <mspace></mspace>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {H}^n\\,\\, (\\hbox{where }n \\geqslant 2)$</annotation>\n </semantics></math>. We work in framework of critical spaces such as on weak-Lorentz space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mrow>\n <mfrac>\n <mi>n</mi>\n <mn>2</mn>\n </mfrac>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^{\\frac{n}{2},\\infty }(\\mathbb {R}^n)$</annotation>\n </semantics></math> to obtain the results for the Keller–Segel system on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> and on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mfrac>\n <mi>p</mi>\n <mn>2</mn>\n </mfrac>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^{\\frac{p}{2}}(\\mathbb {H}^n)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo><</mo>\n <mi>p</mi>\n <mo><</mo>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$n&lt;p&lt;2n$</annotation>\n </semantics></math> to obtain those on <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>. Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments. This work provides also a fully comparison between the asymptotic behaviors of periodic mild solutions of the Keller–Segel system obtained in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> and the one in <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space and real hyperbolic space . We work in framework of critical spaces such as on weak-Lorentz space to obtain the results for the Keller–Segel system on and on for to obtain those on . Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments. This work provides also a fully comparison between the asymptotic behaviors of periodic mild solutions of the Keller–Segel system obtained in and the one in .