Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces

Pub Date : 2024-04-26 DOI:10.1002/mana.202300311
Nguyen Thi Loan, Van Anh Nguyen Thi, Tran Van Thuy, Pham Truong Xuan
{"title":"Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces","authors":"Nguyen Thi Loan,&nbsp;Van Anh Nguyen Thi,&nbsp;Tran Van Thuy,&nbsp;Pham Truong Xuan","doi":"10.1002/mana.202300311","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mspace></mspace>\n <mtext>where</mtext>\n <mspace></mspace>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {R}^n\\,\\,(\\hbox{ where }n \\geqslant 4)$</annotation>\n </semantics></math> and real hyperbolic space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mtext>where</mtext>\n <mspace></mspace>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {H}^n\\,\\, (\\hbox{where }n \\geqslant 2)$</annotation>\n </semantics></math>. We work in framework of critical spaces such as on weak-Lorentz space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mrow>\n <mfrac>\n <mi>n</mi>\n <mn>2</mn>\n </mfrac>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^{\\frac{n}{2},\\infty }(\\mathbb {R}^n)$</annotation>\n </semantics></math> to obtain the results for the Keller–Segel system on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> and on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mfrac>\n <mi>p</mi>\n <mn>2</mn>\n </mfrac>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^{\\frac{p}{2}}(\\mathbb {H}^n)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>&lt;</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$n&amp;lt;p&amp;lt;2n$</annotation>\n </semantics></math> to obtain those on <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>. Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments. This work provides also a fully comparison between the asymptotic behaviors of periodic mild solutions of the Keller–Segel system obtained in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> and the one in <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space R n ( where n 4 ) $\mathbb {R}^n\,\,(\hbox{ where }n \geqslant 4)$ and real hyperbolic space H n ( where n 2 ) $\mathbb {H}^n\,\, (\hbox{where }n \geqslant 2)$ . We work in framework of critical spaces such as on weak-Lorentz space L n 2 , ( R n ) $L^{\frac{n}{2},\infty }(\mathbb {R}^n)$ to obtain the results for the Keller–Segel system on R n $\mathbb {R}^n$ and on L p 2 ( H n ) $L^{\frac{p}{2}}(\mathbb {H}^n)$ for n < p < 2 n $n&lt;p&lt;2n$ to obtain those on H n $\mathbb {H}^n$ . Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments. This work provides also a fully comparison between the asymptotic behaviors of periodic mild solutions of the Keller–Segel system obtained in R n $\mathbb {R}^n$ and the one in  H n $\mathbb {H}^n$ .

分享
查看原文
整体空间上抛物椭圆凯勒-西格尔系统的周期解
在本文中,我们研究了由欧几里得空间和实双曲空间细化的整体空间上抛物线-椭圆 Keller-Segel 系统周期解的存在性和唯一性。我们在弱洛伦兹空间等临界空间的框架内工作,以获得 Keller-Segel 系统在......和......上的结果。我们的方法基于热半群的分散和平滑估计以及定点论证。这项工作还提供了凯勒-西格尔系统的周期性温和解的渐近行为与 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信