Multiplicity of concentrating solutions for (p, q)-Schrödinger equations with lack of compactness

IF 0.8 2区 数学 Q2 MATHEMATICS
Vincenzo Ambrosio, Vicenţiu D. Rădulescu
{"title":"Multiplicity of concentrating solutions for (p, q)-Schrödinger equations with lack of compactness","authors":"Vincenzo Ambrosio, Vicenţiu D. Rădulescu","doi":"10.1007/s11856-024-2619-8","DOIUrl":null,"url":null,"abstract":"<p>We study the multiplicity of concentrating solutions for the following class of (<i>p</i>, <i>q</i>)-Laplacian problems</p><span>$$\\left\\{{\\matrix{{- {\\Delta _p}u - {\\Delta _q}u + V(\\varepsilon \\,x)({u^{p - 1}} + {u^{q - 1}}) = f(u) + \\gamma {u^{{q^ *} - 1}}\\,{\\rm{in}}\\,{\\mathbb{R}^N},} \\hfill \\cr {u \\in {W^{1,p}}({\\mathbb{R}^N}) \\cap {W^{1,q}}({\\mathbb{R}^N}),\\,\\,u &gt; 0\\,\\,{\\rm{in}}\\,\\,{\\mathbb{R}^N},} \\hfill \\cr}} \\right.$$</span><p>where <i>ε</i> &gt; 0 is a small parameter, <span>\\(\\gamma \\in \\{0,1\\},\\,1 &lt; p &lt; q &lt; N,\\,\\,{q^*} = {{Nq} \\over {N - q}}\\)</span> is the critical Sobolev exponent, <span>\\({\\Delta _s}u = {\\rm{div}}(|\\nabla u{|^{s - 2}}\\nabla u)\\)</span>, with <i>s</i> ∈ {<i>p</i>, <i>q</i>}, is the <i>s</i>-Laplacian operator, <i>V</i>: ℝ<sup><i>N</i></sup> → ℝ is a positive continuous potential such that inf<sub>∂Λ</sub> <i>V</i> &gt; inf<sub>Λ</sub> <i>V</i> for some bounded open set Λ ⊂ ℝ<sup><i>N</i></sup>, and <i>f</i>: ℝ → ℝ is a continuous nonlinearity with subcritical growth. The main results are obtained by combining minimax theorems, penalization technique and Ljusternik–Schnirelmann category theory. We also provide a multiplicity result for a supercritical version of the above problem by combining a truncation argument with a Moser-type iteration. As far as we know, all these results are new.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2619-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the multiplicity of concentrating solutions for the following class of (p, q)-Laplacian problems

$$\left\{{\matrix{{- {\Delta _p}u - {\Delta _q}u + V(\varepsilon \,x)({u^{p - 1}} + {u^{q - 1}}) = f(u) + \gamma {u^{{q^ *} - 1}}\,{\rm{in}}\,{\mathbb{R}^N},} \hfill \cr {u \in {W^{1,p}}({\mathbb{R}^N}) \cap {W^{1,q}}({\mathbb{R}^N}),\,\,u > 0\,\,{\rm{in}}\,\,{\mathbb{R}^N},} \hfill \cr}} \right.$$

where ε > 0 is a small parameter, \(\gamma \in \{0,1\},\,1 < p < q < N,\,\,{q^*} = {{Nq} \over {N - q}}\) is the critical Sobolev exponent, \({\Delta _s}u = {\rm{div}}(|\nabla u{|^{s - 2}}\nabla u)\), with s ∈ {p, q}, is the s-Laplacian operator, V: ℝN → ℝ is a positive continuous potential such that inf∂Λ V > infΛ V for some bounded open set Λ ⊂ ℝN, and f: ℝ → ℝ is a continuous nonlinearity with subcritical growth. The main results are obtained by combining minimax theorems, penalization technique and Ljusternik–Schnirelmann category theory. We also provide a multiplicity result for a supercritical version of the above problem by combining a truncation argument with a Moser-type iteration. As far as we know, all these results are new.

缺乏紧凑性的(p, q)薛定谔方程集中解的多重性
我们研究了以下一类(p, q)-拉普拉斯问题的集中解的多重性$$left\{{\matrix{{- {\Delta _p}u - {\Delta _q}u + V(\varepsilon \,x)({u^{p - 1}} + {u^{q - 1}}) = f(u) + \gamma {u^{q^ *}}\,{\rm{in}}\,{\mathbb{R}^N}}\hfill\cr {u\in {W^{1,p}},{\mathbb{R}^N}}.- 1}}\,{\rm{in}}\,{\mathbb{R}^N},} \hfill \cr {u \in {W^{1,p}}({\mathbb{R}^N}) \cap {W^{1,q}}({\mathbb{R}^N}),\,u > 0\,\,{\rm{in}}\,{\mathbb{R}^N},} \hfill \cr}}}\$$where ε > 0 is a small parameter, (在 \gamma \{0,1\}, \,1 < p < q < N,\,{q^*} = {{Nq}\over{N-q}})是临界 Sobolev 指数,({\Delta _s}u = {\rm{div}}(|\nabla u{|^{s - 2}}\nabla u)),s∈{p, q},是 s-Laplacian 算子,V:V: ℝN → ℝ 是一个正连续势,使得对于某个有界开集Λ ⊂ ℝN 来说 inf∂Λ V > infΛ V,而 f: ℝ → ℝ 是一个具有亚临界增长的连续非线性。主要结果是结合最小值定理、惩罚技术和 Ljusternik-Schnirelmann 范畴理论得出的。我们还通过截断论证与 Moser 型迭代相结合,给出了上述问题超临界版本的多重性结果。据我们所知,所有这些结果都是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信