Maximizing Minimum Cycle Bases Intersection

Dimitri WatelSAMOVAR, ENSIIE, Marc-Antoine WeisserGALaC, Dominique BarthUVSQ, DAVID, Ylène AboulfathUVSQ, DAVID, Thierry MautorUVSQ, DAVID
{"title":"Maximizing Minimum Cycle Bases Intersection","authors":"Dimitri WatelSAMOVAR, ENSIIE, Marc-Antoine WeisserGALaC, Dominique BarthUVSQ, DAVID, Ylène AboulfathUVSQ, DAVID, Thierry MautorUVSQ, DAVID","doi":"arxiv-2404.17223","DOIUrl":null,"url":null,"abstract":"We address a specific case of the matroid intersection problem: given a set\nof graphs sharing the same set of vertices, select a minimum cycle basis for\neach graph to maximize the size of their intersection. We provide a\ncomprehensive complexity analysis of this problem, which finds applications in\nchemoinformatics. We establish a complete partition of subcases based on\nintrinsic parameters: the number of graphs, the maximum degree of the graphs,\nand the size of the longest cycle in the minimum cycle bases. Additionally, we\npresent results concerning the approximability and parameterized complexity of\nthe problem.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.17223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address a specific case of the matroid intersection problem: given a set of graphs sharing the same set of vertices, select a minimum cycle basis for each graph to maximize the size of their intersection. We provide a comprehensive complexity analysis of this problem, which finds applications in chemoinformatics. We establish a complete partition of subcases based on intrinsic parameters: the number of graphs, the maximum degree of the graphs, and the size of the longest cycle in the minimum cycle bases. Additionally, we present results concerning the approximability and parameterized complexity of the problem.
最大化最小循环基数交叉点
我们讨论了矩阵交集问题的一个具体案例:给定一组共享相同顶点的图,为每个图选择一个最小循环基础,以最大化它们的交集大小。我们对这一问题进行了全面的复杂性分析,并将其应用于数学信息学。我们根据内在参数:图的数量、图的最大度以及最小循环基中最长循环的大小,建立了一个完整的子案例分区。此外,我们还给出了问题的近似性和参数化复杂性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信