Characterizing Bipartite Distance-Regularized Graphs with Vertices of Eccentricity 4

IF 1 3区 数学 Q1 MATHEMATICS
Blas Fernández, Marija Maksimović, Sanja Rukavina
{"title":"Characterizing Bipartite Distance-Regularized Graphs with Vertices of Eccentricity 4","authors":"Blas Fernández, Marija Maksimović, Sanja Rukavina","doi":"10.1007/s40840-024-01690-8","DOIUrl":null,"url":null,"abstract":"<p>Consider a bipartite distance-regularized graph <span>\\(\\Gamma \\)</span> with color partitions <i>Y</i> and <span>\\(Y'\\)</span>. Notably, all vertices in partition <i>Y</i> (and similarly in <span>\\(Y'\\)</span>) exhibit a shared eccentricity denoted as <i>D</i> (and <span>\\(D'\\)</span>, respectively). The characterization of bipartite distance-regularized graphs, specifically those with <span>\\(D \\le 3\\)</span>, in relation to the incidence structures they represent is well established. However, when <span>\\(D=4\\)</span>, there are only two possible scenarios: either <span>\\(D'=3\\)</span> or <span>\\(D'=4\\)</span>. The instance where <span>\\(D=4\\)</span> and <span>\\(D'=3\\)</span> has been previously investigated. In this paper, we establish a one-to-one correspondence between the incidence graphs of quasi-symmetric SPBIBDs with parameters <span>\\((v, b, r, k, \\lambda _1, 0)\\)</span> of type <span>\\((k-1, t)\\)</span>, featuring intersection numbers <span>\\(x=0\\)</span> and <span>\\(y&gt;0\\)</span> (where <span>\\(y \\le t &lt; k\\)</span>), and bipartite distance-regularized graphs with <span>\\(D=D'=4\\)</span>. Moreover, our investigations result in the systematic classification of 2-<i>Y</i>-homogeneous bipartite distance-regularized graphs, which are incidence graphs of quasi-symmetric SPBIBDs with parameters <span>\\((v,b,r,k, \\lambda _1,0)\\)</span> of type <span>\\((k-1,t)\\)</span> with intersection numbers <span>\\(x=0\\)</span> and <span>\\(y=1\\)</span>.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"31 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01690-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a bipartite distance-regularized graph \(\Gamma \) with color partitions Y and \(Y'\). Notably, all vertices in partition Y (and similarly in \(Y'\)) exhibit a shared eccentricity denoted as D (and \(D'\), respectively). The characterization of bipartite distance-regularized graphs, specifically those with \(D \le 3\), in relation to the incidence structures they represent is well established. However, when \(D=4\), there are only two possible scenarios: either \(D'=3\) or \(D'=4\). The instance where \(D=4\) and \(D'=3\) has been previously investigated. In this paper, we establish a one-to-one correspondence between the incidence graphs of quasi-symmetric SPBIBDs with parameters \((v, b, r, k, \lambda _1, 0)\) of type \((k-1, t)\), featuring intersection numbers \(x=0\) and \(y>0\) (where \(y \le t < k\)), and bipartite distance-regularized graphs with \(D=D'=4\). Moreover, our investigations result in the systematic classification of 2-Y-homogeneous bipartite distance-regularized graphs, which are incidence graphs of quasi-symmetric SPBIBDs with parameters \((v,b,r,k, \lambda _1,0)\) of type \((k-1,t)\) with intersection numbers \(x=0\) and \(y=1\).

表征具有偏心顶点的双方距规则化图形 4
考虑一个具有颜色分区 Y 和 Y'\ 的双方形距离规则化图(Gamma \)。值得注意的是,在分区 Y 中(类似地在(Y'\)中)的所有顶点都有一个共同的偏心率,分别表示为 D(和 (D'\))。双分部距离规则化图,特别是那些与它们所代表的入射结构相关的 \(D \le 3\) 图,其特征描述是公认的。然而,当\(D=4\)时,只有两种可能的情况:要么\(D'=3\),要么\(D'=4\)。之前已经研究过\(D=4\)和\(D'=3\)的情况。在本文中,我们在参数为\((v, b, r, k, \lambda _1, 0)\((k-1, t)\)的准对称SPBIBD的入射图之间建立了一一对应的关系,其特点是交点数为\(x=0\)和\(y>;0)(其中,(y = t = k)),以及具有(D=D'=4)的双方距规则化图。此外,我们的研究还对2-Y-同构双方距规则化图进行了系统分类,它们是参数为\((v,b,r,k, \lambda _1,0)\((k-1,t)\)类型的准对称SPBIBD的入射图,交点数为\(x=0\)和\(y=1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信