Mamta Mittal, Nitin Kumar Chauhan, Adrija Ghansiyal, D. Jude Hemanth
{"title":"Binary and Ternary Classifiers to Detect COVID-19 Patients Using Chest X-ray Images: An Efficient Layered CNN Approach","authors":"Mamta Mittal, Nitin Kumar Chauhan, Adrija Ghansiyal, D. Jude Hemanth","doi":"10.1007/s00354-024-00254-5","DOIUrl":null,"url":null,"abstract":"<p>Coronavirus disease 2019, i.e., COVID-19, an emerging contagious disease with human-to-human transmission, first appeared at the end of year 2019. The sudden demand for disease diagnostic kits prompted researchers to shift their focus toward developing solutions that could assist in identifying COVID-19 using available resources. Therefore, it is imperative to develop a high-accuracy system that makes use of Artificial Intelligence and its tools considering its contribution to computer vision. The time consumed to diagnose test outcomes is to be taken care of as a crucial aspect of an efficient model. To address the global challenges faced by the COVID-19 pandemic, this study proposed two deep learning models developed for automatic COVID-19 detection and distinguish it from pneumonia, another common lung disease. The proposed designs implement layered convolutional neural networks and are trained on a data set of 1824 chest X-rays for binary classification (COVID-19 and normal) and 2736 chest X-rays for ternary classification (COVID-19, normal, and pneumonia). The input images and hyper-parameters in the convolution layers are fine-tuned during the model training phase. The observations show that the proposed models have achieved a better performance as compared to their earlier contemporaries’ approaches, resulting in accuracy, precision, recall, and F-score of 98.91%, 98.5%, 98.5%, and 99% for binary-class and 95.99%, 96.3%, 96%, and 96.33% for ternary-class classifiers, respectively. The presented architectures have been built from scratch, thus with the implemented convolutional layered architecture, they were successful in providing more efficient and early diagnosis of the disease.</p>","PeriodicalId":54726,"journal":{"name":"New Generation Computing","volume":"18 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Generation Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00354-024-00254-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Coronavirus disease 2019, i.e., COVID-19, an emerging contagious disease with human-to-human transmission, first appeared at the end of year 2019. The sudden demand for disease diagnostic kits prompted researchers to shift their focus toward developing solutions that could assist in identifying COVID-19 using available resources. Therefore, it is imperative to develop a high-accuracy system that makes use of Artificial Intelligence and its tools considering its contribution to computer vision. The time consumed to diagnose test outcomes is to be taken care of as a crucial aspect of an efficient model. To address the global challenges faced by the COVID-19 pandemic, this study proposed two deep learning models developed for automatic COVID-19 detection and distinguish it from pneumonia, another common lung disease. The proposed designs implement layered convolutional neural networks and are trained on a data set of 1824 chest X-rays for binary classification (COVID-19 and normal) and 2736 chest X-rays for ternary classification (COVID-19, normal, and pneumonia). The input images and hyper-parameters in the convolution layers are fine-tuned during the model training phase. The observations show that the proposed models have achieved a better performance as compared to their earlier contemporaries’ approaches, resulting in accuracy, precision, recall, and F-score of 98.91%, 98.5%, 98.5%, and 99% for binary-class and 95.99%, 96.3%, 96%, and 96.33% for ternary-class classifiers, respectively. The presented architectures have been built from scratch, thus with the implemented convolutional layered architecture, they were successful in providing more efficient and early diagnosis of the disease.
期刊介绍:
The journal is specially intended to support the development of new computational and cognitive paradigms stemming from the cross-fertilization of various research fields. These fields include, but are not limited to, programming (logic, constraint, functional, object-oriented), distributed/parallel computing, knowledge-based systems, agent-oriented systems, and cognitive aspects of human embodied knowledge. It also encourages theoretical and/or practical papers concerning all types of learning, knowledge discovery, evolutionary mechanisms, human cognition and learning, and emergent systems that can lead to key technologies enabling us to build more complex and intelligent systems. The editorial board hopes that New Generation Computing will work as a catalyst among active researchers with broad interests by ensuring a smooth publication process.