{"title":"An Efficient GIPM Algorithm for Computing the Smallest V-Singular Value of the Partially Symmetric Tensor","authors":"Zhuolin Du, Chunyan Wang, Haibin Chen, Hong Yan","doi":"10.1007/s10957-024-02434-1","DOIUrl":null,"url":null,"abstract":"<p>Real partially symmetric tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we try to compute the smallest V-singular value of partially symmetric tensors with orders (<i>p</i>, <i>q</i>). This is a unified notion in a broad sense that, when <span>\\((p,q)=(2,2)\\)</span>, the V-singular value coincides with the notion of M-eigenvalue. To do that, we propose a generalized inverse power method with a shift variable to compute the smallest V-singular value and eigenvectors. Global convergence of the algorithm is established. Furthermore, it is proven that the proposed algorithm always converges to the smallest V-singular value and the associated eigenvectors. Several numerical experiments show the efficiency of the proposed algorithm.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"127 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02434-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Real partially symmetric tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we try to compute the smallest V-singular value of partially symmetric tensors with orders (p, q). This is a unified notion in a broad sense that, when \((p,q)=(2,2)\), the V-singular value coincides with the notion of M-eigenvalue. To do that, we propose a generalized inverse power method with a shift variable to compute the smallest V-singular value and eigenvectors. Global convergence of the algorithm is established. Furthermore, it is proven that the proposed algorithm always converges to the smallest V-singular value and the associated eigenvectors. Several numerical experiments show the efficiency of the proposed algorithm.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.