Rainbow Variations on a Theme by Mantel: Extremal Problems for Gallai Colouring Templates

IF 1 2区 数学 Q1 MATHEMATICS
Victor Falgas-Ravry, Klas Markström, Eero Räty
{"title":"Rainbow Variations on a Theme by Mantel: Extremal Problems for Gallai Colouring Templates","authors":"Victor Falgas-Ravry, Klas Markström, Eero Räty","doi":"10.1007/s00493-024-00102-6","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\textbf{G}:=(G_1, G_2, G_3)\\)</span> be a triple of graphs on the same vertex set <i>V</i> of size <i>n</i>. A rainbow triangle in <span>\\(\\textbf{G}\\)</span> is a triple of edges <span>\\((e_1, e_2, e_3)\\)</span> with <span>\\(e_i\\in G_i\\)</span> for each <i>i</i> and <span>\\(\\{e_1, e_2, e_3\\}\\)</span> forming a triangle in <i>V</i>. The triples <span>\\(\\textbf{G}\\)</span> not containing rainbow triangles, also known as Gallai colouring templates, are a widely studied class of objects in extremal combinatorics. In the present work, we fully determine the set of edge densities <span>\\((\\alpha _1, \\alpha _2, \\alpha _3)\\)</span> such that if <span>\\(\\vert E(G_i)\\vert &gt; \\alpha _i n^2\\)</span> for each <i>i</i> and <i>n</i> is sufficiently large, then <span>\\(\\textbf{G}\\)</span> must contain a rainbow triangle. This resolves a problem raised by Aharoni, DeVos, de la Maza, Montejanos and Šámal, generalises several previous results on extremal Gallai colouring templates, and proves a recent conjecture of Frankl, Győri, He, Lv, Salia, Tompkins, Varga and Zhu.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00102-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\textbf{G}:=(G_1, G_2, G_3)\) be a triple of graphs on the same vertex set V of size n. A rainbow triangle in \(\textbf{G}\) is a triple of edges \((e_1, e_2, e_3)\) with \(e_i\in G_i\) for each i and \(\{e_1, e_2, e_3\}\) forming a triangle in V. The triples \(\textbf{G}\) not containing rainbow triangles, also known as Gallai colouring templates, are a widely studied class of objects in extremal combinatorics. In the present work, we fully determine the set of edge densities \((\alpha _1, \alpha _2, \alpha _3)\) such that if \(\vert E(G_i)\vert > \alpha _i n^2\) for each i and n is sufficiently large, then \(\textbf{G}\) must contain a rainbow triangle. This resolves a problem raised by Aharoni, DeVos, de la Maza, Montejanos and Šámal, generalises several previous results on extremal Gallai colouring templates, and proves a recent conjecture of Frankl, Győri, He, Lv, Salia, Tompkins, Varga and Zhu.

Abstract Image

曼特尔的主题彩虹变奏曲:加莱填色模板的极值问题
让 \textbf{G}:=(G_1, G_2, G_3)\ 是大小为 n 的同一顶点集 V 上的三重图。在 \(textbf{G}\) 中的彩虹三角形是边 \((e_1,e_2,e_3)\)的三重,每个 i 都有\(e_i\in G_i\),并且 \(\{e_1,e_2,e_3\}\)在 V 中形成了一个三角形。不包含彩虹三角形的三元组 \(\textbf{G}\)也被称为伽莱着色模板,是极值组合学中被广泛研究的一类对象。在本研究中,我们完全确定了边缘密度的集合 \((\alpha _1, \alpha _2, \alpha _3)\) ,如果 \(\vert E(G_i)\vert > \alpha _i n^2\) 对于每个 i 和 n 都足够大,那么 \(\textbf{G}\) 必须包含彩虹三角形。这解决了阿哈罗尼、德沃斯、德拉马扎、蒙特亚诺和萨马尔提出的一个问题,推广了之前关于极伽来着色模板的几个结果,并证明了弗兰克尔、邱里、何、吕、萨利亚、汤普金斯、瓦尔加和朱最近的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信