Graphene in cryo-EM specimen optimization

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nan Liu , Hong-Wei Wang
{"title":"Graphene in cryo-EM specimen optimization","authors":"Nan Liu ,&nbsp;Hong-Wei Wang","doi":"10.1016/j.sbi.2024.102823","DOIUrl":null,"url":null,"abstract":"<div><p>Specimen preparation is a critical but challenging step in high-resolution cryogenic electron microscopy (cryo-EM) structural analysis of macromolecules. In the past decade, graphene has gained much recognition as the supporting substrate to optimize cryo-EM specimen preparation. It improves macromolecule embedding in ice, reduces beam-induced motion, while imposing negligible background noise. Various types of graphene-coated cryo-EM grids were implemented to improve the robustness and efficiency of specimen preparation. Graphene functionalization by different means has been proved specifically useful in addressing challenges related to the air-water interface (AWI), such as preferential orientation and sample denaturation. Graphene sandwich specimen preparation sets a new direction to explore in cryo-EM analysis of biological specimens. In this review, we discuss the current challenges and future prospects of graphene application in cryo-EM analysis of macromolecules.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"86 ","pages":"Article 102823"},"PeriodicalIF":6.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24000502/pdfft?md5=7c99eb7821773320986464ac6dfb0a1b&pid=1-s2.0-S0959440X24000502-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000502","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Specimen preparation is a critical but challenging step in high-resolution cryogenic electron microscopy (cryo-EM) structural analysis of macromolecules. In the past decade, graphene has gained much recognition as the supporting substrate to optimize cryo-EM specimen preparation. It improves macromolecule embedding in ice, reduces beam-induced motion, while imposing negligible background noise. Various types of graphene-coated cryo-EM grids were implemented to improve the robustness and efficiency of specimen preparation. Graphene functionalization by different means has been proved specifically useful in addressing challenges related to the air-water interface (AWI), such as preferential orientation and sample denaturation. Graphene sandwich specimen preparation sets a new direction to explore in cryo-EM analysis of biological specimens. In this review, we discuss the current challenges and future prospects of graphene application in cryo-EM analysis of macromolecules.

低温电子显微镜试样中的石墨烯优化
在对大分子进行高分辨率低温电子显微镜(cryo-EM)结构分析时,标本制备是一个关键但极具挑战性的步骤。在过去的十年中,石墨烯作为优化低温电子显微镜标本制备的支撑基底得到了广泛认可。石墨烯可改善大分子在冰中的嵌入,减少光束引起的运动,同时可忽略背景噪声。为了提高标本制备的稳健性和效率,我们采用了各种类型的石墨烯涂层冷冻电镜网格。事实证明,通过不同方法对石墨烯进行功能化,特别有助于解决与空气-水界面(AWI)相关的难题,如优先取向和样品变性。石墨烯夹层标本制备为生物标本的冷冻电镜分析提供了一个新的探索方向。在这篇综述中,我们将讨论石墨烯应用于大分子冷冻电镜分析的当前挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信