Sundeep Raj, Sandesh Tripathi, K. C. Tripathi, Rajendra Kumar Bharti
{"title":"Hybrid optimized deep recurrent neural network for atmospheric and oceanic parameters prediction by feature fusion and data augmentation model","authors":"Sundeep Raj, Sandesh Tripathi, K. C. Tripathi, Rajendra Kumar Bharti","doi":"10.1007/s10878-024-01159-1","DOIUrl":null,"url":null,"abstract":"<p>In recent years climate prediction has obtained more attention to mitigate the impact of natural disasters caused by climatic variability. Efficient and effective climate prediction helps palliate negative consequences and allows favourable conditions for managing the resources optimally through proper planning. Due to the environmental, geopolitical and economic consequences, forecasting of atmospheric and oceanic parameters still results in a challenging task. An efficient prediction technique named Sea Lion Autoregressive Deer Hunting Optimization-based Deep Recurrent Neural Network (SLArDHO-based Deep RNN) is developed in this research to predict the oceanic and atmospheric parameters. The extraction of technical indicators makes the devised method create optimal and accurate prediction outcomes by employing the deep learning framework. The classifier uses more training samples and this can be generated by augmenting the data samples using the oversampling method. The atmospheric and the oceanic parameters are considered for the prediction strategy using the Deep RNN classifier. Here, the weights of the Deep RNN classifier are optimally tuned by the SLArDHO algorithm to find the best value based on the fitness function. The devised method obtains minimum mean squared error (MSE), root mean square error (RMSE), mean absolute error (MAE) of 0.020, 0.142, and 0.029 for the All India Rainfall Index (AIRI) dataset.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"127 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01159-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years climate prediction has obtained more attention to mitigate the impact of natural disasters caused by climatic variability. Efficient and effective climate prediction helps palliate negative consequences and allows favourable conditions for managing the resources optimally through proper planning. Due to the environmental, geopolitical and economic consequences, forecasting of atmospheric and oceanic parameters still results in a challenging task. An efficient prediction technique named Sea Lion Autoregressive Deer Hunting Optimization-based Deep Recurrent Neural Network (SLArDHO-based Deep RNN) is developed in this research to predict the oceanic and atmospheric parameters. The extraction of technical indicators makes the devised method create optimal and accurate prediction outcomes by employing the deep learning framework. The classifier uses more training samples and this can be generated by augmenting the data samples using the oversampling method. The atmospheric and the oceanic parameters are considered for the prediction strategy using the Deep RNN classifier. Here, the weights of the Deep RNN classifier are optimally tuned by the SLArDHO algorithm to find the best value based on the fitness function. The devised method obtains minimum mean squared error (MSE), root mean square error (RMSE), mean absolute error (MAE) of 0.020, 0.142, and 0.029 for the All India Rainfall Index (AIRI) dataset.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.