{"title":"A fast and accurate kernel-based independence test with applications to high-dimensional and functional data","authors":"Jin-Ting Zhang , Tianming Zhu","doi":"10.1016/j.jmva.2024.105320","DOIUrl":null,"url":null,"abstract":"<div><p>Testing the dependency between two random variables is an important inference problem in statistics since many statistical procedures rely on the assumption that the two samples are independent. To test whether two samples are independent, a so-called HSIC (Hilbert–Schmidt Independence Criterion)-based test has been proposed. Its null distribution is approximated either by permutation or a Gamma approximation. In this paper, a new HSIC-based test is proposed. Its asymptotic null and alternative distributions are established. It is shown that the proposed test is root-<span><math><mi>n</mi></math></span> consistent. A three-cumulant matched chi-squared-approximation is adopted to approximate the null distribution of the test statistic. By choosing a proper reproducing kernel, the proposed test can be applied to many different types of data including multivariate, high-dimensional, and functional data. Three simulation studies and two real data applications show that in terms of level accuracy, power, and computational cost, the proposed test outperforms several existing tests for multivariate, high-dimensional, and functional data.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000277","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Testing the dependency between two random variables is an important inference problem in statistics since many statistical procedures rely on the assumption that the two samples are independent. To test whether two samples are independent, a so-called HSIC (Hilbert–Schmidt Independence Criterion)-based test has been proposed. Its null distribution is approximated either by permutation or a Gamma approximation. In this paper, a new HSIC-based test is proposed. Its asymptotic null and alternative distributions are established. It is shown that the proposed test is root- consistent. A three-cumulant matched chi-squared-approximation is adopted to approximate the null distribution of the test statistic. By choosing a proper reproducing kernel, the proposed test can be applied to many different types of data including multivariate, high-dimensional, and functional data. Three simulation studies and two real data applications show that in terms of level accuracy, power, and computational cost, the proposed test outperforms several existing tests for multivariate, high-dimensional, and functional data.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.