A refinement of the LMO invariant for 3-manifolds with the first Betti number 1

IF 0.6 4区 数学 Q3 MATHEMATICS
Tomotada Ohtsuki
{"title":"A refinement of the LMO invariant for 3-manifolds with the first Betti number 1","authors":"Tomotada Ohtsuki","doi":"10.1142/s0129167x24500204","DOIUrl":null,"url":null,"abstract":"<p>It is known that the LMO invariant of 3-manifolds with positive first Betti numbers is relatively weak and can be determined by “(semi-)classical” invariants such as the cohomology ring, the Alexander polynomial, and the Casson–Walker–Lescop invariant.</p><p>In this paper, we formulate a refinement of the LMO invariant for 3-manifolds with the first Betti number 1. It dominates the perturbative SO(3) invariant of such 3-manifolds, which is the power series invariant formulated by the arithmetic perturbative expansion of the quantum SO(3) invariants of such 3-manifolds. As the 2-loop part of the refinement of the LMO invariant, we define the 2-loop polynomial of such 3-manifolds. Further, as the <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝔰</mi><msub><mrow><mi>𝔩</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span><span></span> reduction at large <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span> limit of the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℓ</mi></math></span><span></span>-loop part of the refinement of the LMO invariant for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℓ</mi><mo>≤</mo><mn>5</mn></math></span><span></span>, we formulate an <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℓ</mi></math></span><span></span>-variable polynomial invariant of such 3-manifolds whose Alexander polynomial is constant.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":"44 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24500204","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that the LMO invariant of 3-manifolds with positive first Betti numbers is relatively weak and can be determined by “(semi-)classical” invariants such as the cohomology ring, the Alexander polynomial, and the Casson–Walker–Lescop invariant.

In this paper, we formulate a refinement of the LMO invariant for 3-manifolds with the first Betti number 1. It dominates the perturbative SO(3) invariant of such 3-manifolds, which is the power series invariant formulated by the arithmetic perturbative expansion of the quantum SO(3) invariants of such 3-manifolds. As the 2-loop part of the refinement of the LMO invariant, we define the 2-loop polynomial of such 3-manifolds. Further, as the 𝔰𝔩m reduction at large m limit of the -loop part of the refinement of the LMO invariant for 5, we formulate an -variable polynomial invariant of such 3-manifolds whose Alexander polynomial is constant.

第一个贝蒂数为 1 的 3 维网格的 LMO 不变量的改进
众所周知,具有正第一贝蒂数的 3-manifolds(3-manifolds)的 LMO 不变量相对较弱,可以由同调环、亚历山大多项式和卡森-沃克-莱斯科普不变量等"(半)经典 "不变式决定。它主宰着此类 3-manifolds的扰动 SO(3) 不变量,即由此类 3-manifolds的量子 SO(3) 不变量的算术扰动展开制定的幂级数不变量。作为 LMO 不变量细化的二环部分,我们定义了这类 3-manifolds的二环多项式。此外,作为ℓ≤5 时 LMO 不变量细化的ℓ-环部分在大 m 极限的𝔰𝔩m 减少,我们提出了此类 3-manifolds 的ℓ-变量多项式不变量,其亚历山大多项式是常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信