Equivariant Algebraic K-Theory and Derived completions III: Applications

Gunnar Carlsson, Roy Joshua, Pablo Pelaez
{"title":"Equivariant Algebraic K-Theory and Derived completions III: Applications","authors":"Gunnar Carlsson, Roy Joshua, Pablo Pelaez","doi":"arxiv-2404.13199","DOIUrl":null,"url":null,"abstract":"In the present paper, we discuss applications of the derived completion\ntheorems proven in our previous two papers. One of the main applications is to\nRiemann-Roch problems for forms of higher equivariant K-theory, which we are\nable to establish in great generality both for equivariant G-theory and\nequivariant homotopy K-theory with respect to actions of linear algebraic\ngroups on normal quasi-projective schemes over a given field. We show such\nRiemann-Roch theorems apply to all toric and spherical varieties. We also obtain Lefschetz-Riemann-Roch theorems involving the fixed point\nschemes with respect to actions of diagonalizable group schemes. We also show\nthe existence of certain spectral sequences that compute the homotopy groups of\nthe derived completions of equivariant G-theory starting with equivariant\nBorel-Moore motivic cohomology.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.13199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we discuss applications of the derived completion theorems proven in our previous two papers. One of the main applications is to Riemann-Roch problems for forms of higher equivariant K-theory, which we are able to establish in great generality both for equivariant G-theory and equivariant homotopy K-theory with respect to actions of linear algebraic groups on normal quasi-projective schemes over a given field. We show such Riemann-Roch theorems apply to all toric and spherical varieties. We also obtain Lefschetz-Riemann-Roch theorems involving the fixed point schemes with respect to actions of diagonalizable group schemes. We also show the existence of certain spectral sequences that compute the homotopy groups of the derived completions of equivariant G-theory starting with equivariant Borel-Moore motivic cohomology.
等变代数 K 理论和衍生完备性 III:应用
在本文中,我们讨论了前两篇论文中证明的派生完备定理的应用。其中一个主要应用是高等等式 K 理论形式的黎曼-罗赫(Riemann-Roch)问题,我们可以就给定域上正态准投影方案上的线性代数群的作用,在等式 G 理论和等式同调 K 理论中普遍建立黎曼-罗赫定理。我们证明这样的黎曼-罗赫定理适用于所有环状和球状变体。我们还得到了涉及可对角化群方案作用的定点化学的莱夫谢茨-黎曼-罗赫定理。我们还证明了某些谱序列的存在,这些谱序列从等变伯尔莫尔动机同调开始计算等变 G 理论的派生完备的同调群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信