Forecasting the Forced Van der Pol Equation with Frequent Phase Shifts Using a Reservoir Computer

Sho Kuno, Hiroshi Kori
{"title":"Forecasting the Forced Van der Pol Equation with Frequent Phase Shifts Using a Reservoir Computer","authors":"Sho Kuno, Hiroshi Kori","doi":"arxiv-2404.14651","DOIUrl":null,"url":null,"abstract":"A reservoir computer (RC) is a recurrent neural network (RNN) framework that\nachieves computational efficiency where only readout layer training is\nrequired. Additionally, it effectively predicts nonlinear dynamical system\ntasks and has various applications. RC is effective for forecasting\nnonautonomous dynamical systems with gradual changes to the external drive\namplitude. This study investigates the predictability of nonautonomous\ndynamical systems with rapid changes to the phase of the external drive. The\nforced Van der Pol equation was employed for the base model, implementing\nforecasting tasks with the RC. The study findings suggest that, despite hidden\nvariables, a nonautonomous dynamical system with rapid changes to the phase of\nthe external drive is predictable. Therefore, RC can offer better schedules for\nindividual shift workers.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.14651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A reservoir computer (RC) is a recurrent neural network (RNN) framework that achieves computational efficiency where only readout layer training is required. Additionally, it effectively predicts nonlinear dynamical system tasks and has various applications. RC is effective for forecasting nonautonomous dynamical systems with gradual changes to the external drive amplitude. This study investigates the predictability of nonautonomous dynamical systems with rapid changes to the phase of the external drive. The forced Van der Pol equation was employed for the base model, implementing forecasting tasks with the RC. The study findings suggest that, despite hidden variables, a nonautonomous dynamical system with rapid changes to the phase of the external drive is predictable. Therefore, RC can offer better schedules for individual shift workers.
利用油藏计算机预测相位频繁变化的强制范德波尔方程
水库计算机(RC)是一种递归神经网络(RNN)框架,只需对读出层进行训练即可提高计算效率。此外,它还能有效预测非线性动态系统任务,并有多种应用。RC 对于预测外部驱动振幅渐变的非自主动态系统非常有效。本研究探讨了外部驱动相位快速变化的非自主动力系统的可预测性。基础模型采用了加强范德波尔方程,并使用 RC 执行预测任务。研究结果表明,尽管存在隐藏变量,但外部驱动相位快速变化的非自主动力系统是可预测的。因此,RC 可以为个体轮班工人提供更好的时间安排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信