Distributivity and minimality in perfect tree forcings for singular cardinals

Pub Date : 2024-04-24 DOI:10.1007/s11856-024-2607-z
Maxwell Levine, Heike Mildenberger
{"title":"Distributivity and minimality in perfect tree forcings for singular cardinals","authors":"Maxwell Levine, Heike Mildenberger","doi":"10.1007/s11856-024-2607-z","DOIUrl":null,"url":null,"abstract":"<p>Dobrinen, Hathaway and Prikry studied a forcing ℙ<sub><i>κ</i></sub> consisting of perfect trees of height λ and width <i>κ</i> where <i>κ</i> is a singular λ-strong limit of cofinality λ. They showed that if <i>κ</i> is singular of countable cofinality, then ℙ<sub><i>κ</i></sub> is minimal for <i>ω</i>-sequences assuming that <i>κ</i> is a supremum of a sequence of measurable cardinals. We obtain this result without the measurability assumption.</p><p>Prikry proved that ℙ<sub><i>κ</i></sub> is (<i>ω</i>, <i>ν</i>)-distributive for all <i>ν</i> &lt; <i>κ</i> given a singular <i>ω</i>-strong limit cardinal <i>κ</i> of countable cofinality, and Dobrinen et al. asked whether this result generalizes if <i>κ</i> has uncountable cofinality. We answer their question in the negative by showing that ℙ<sub><i>κ</i></sub> is not (λ, 2)-distributive if <i>κ</i> is a λ-strong limit of uncountable cofinality λ and we obtain the same result for a range of similar forcings, including one that Dobrinen et al. consider that consists of pre-perfect trees. We also show that ℙ<sub><i>κ</i></sub> in particular is not (<i>ω</i>, ·, λ<sup>+</sup>)-distributive under these assumptions.</p><p>While developing these ideas, we address natural questions regarding minimality and collapses of cardinals.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2607-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dobrinen, Hathaway and Prikry studied a forcing ℙκ consisting of perfect trees of height λ and width κ where κ is a singular λ-strong limit of cofinality λ. They showed that if κ is singular of countable cofinality, then ℙκ is minimal for ω-sequences assuming that κ is a supremum of a sequence of measurable cardinals. We obtain this result without the measurability assumption.

Prikry proved that ℙκ is (ω, ν)-distributive for all ν < κ given a singular ω-strong limit cardinal κ of countable cofinality, and Dobrinen et al. asked whether this result generalizes if κ has uncountable cofinality. We answer their question in the negative by showing that ℙκ is not (λ, 2)-distributive if κ is a λ-strong limit of uncountable cofinality λ and we obtain the same result for a range of similar forcings, including one that Dobrinen et al. consider that consists of pre-perfect trees. We also show that ℙκ in particular is not (ω, ·, λ+)-distributive under these assumptions.

While developing these ideas, we address natural questions regarding minimality and collapses of cardinals.

分享
查看原文
奇异红心的完美树强制中的分布性和最小性
Dobrinen、Hathaway 和 Prikry 研究了由高度为 λ、宽度为 κ 的完全树组成的强迫ℙκ,其中 κ 是 cofinality λ 的奇异 λ 强极限。他们证明,如果 κ 是可数 cofinality 的奇异,那么假设 κ 是可测 cardinals 序列的上集,ℙκ 是 ω 序列的最小值。普里克利证明了ℙκ对于所有ν < κ都是(ω, ν)分布式的。我们对他们的问题做出了否定的回答,证明如果κ是不可数同频λ的λ-强极限,↙κ就不是(λ,2)-分布式的,而且我们对一系列类似的强迫也得到了相同的结果,包括 Dobrinen 等人考虑的由前完全树组成的强迫。我们还证明,在这些假设条件下,ℙκ 尤其不是 (ω, -, λ+)-分布式的。在提出这些观点的同时,我们还解决了有关最小性和红心折叠的自然问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信