Centrality of K2 for Chevalley groups: a pro-group approach

IF 0.8 2区 数学 Q2 MATHEMATICS
Andrei Lavrenov, Sergey Sinchuk, Egor Voronetsky
{"title":"Centrality of K2 for Chevalley groups: a pro-group approach","authors":"Andrei Lavrenov, Sergey Sinchuk, Egor Voronetsky","doi":"10.1007/s11856-024-2608-y","DOIUrl":null,"url":null,"abstract":"<p>We prove the centrality of K<sub>2</sub>(F<sub>4</sub>, <i>R</i>) for an arbitrary commutative ring <i>R</i>. This completes the proof of the centrality of K<sub>2</sub>(Φ, <i>R</i>) for any root system Φ of rank ≥ 3. Our proof uses only elementary localization techniques reformulated in terms of pro-groups. Another new result of the paper is the construction of a crossed module on the canonical homomorphism St(Φ, <i>R</i>) → G<sub>sc</sub>(Φ, <i>R</i>), which has not been known previously for exceptional Φ.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2608-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the centrality of K2(F4, R) for an arbitrary commutative ring R. This completes the proof of the centrality of K2(Φ, R) for any root system Φ of rank ≥ 3. Our proof uses only elementary localization techniques reformulated in terms of pro-groups. Another new result of the paper is the construction of a crossed module on the canonical homomorphism St(Φ, R) → Gsc(Φ, R), which has not been known previously for exceptional Φ.

切瓦利组的 K2 中心性:一种支持组的方法
我们证明了任意交换环 R 的 K2(F4, R) 的中心性,从而完成了秩≥ 3 的任意根系统 Φ 的 K2(Φ, R) 的中心性证明。我们的证明只使用了用原群重新表述的基本本地化技术。本文的另一个新成果是构造了关于典范同态 St(Φ, R) → Gsc(Φ, R) 的交叉模块,这在以前的例外 Φ 中是不存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信