Solvability of the Cauchy problem for fractional semilinear parabolic equations in critical and doubly critical cases

IF 1.1 3区 数学 Q1 MATHEMATICS
Yasuhito Miyamoto, Masamitsu Suzuki
{"title":"Solvability of the Cauchy problem for fractional semilinear parabolic equations in critical and doubly critical cases","authors":"Yasuhito Miyamoto, Masamitsu Suzuki","doi":"10.1007/s00028-024-00967-6","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(0&lt;\\theta \\le 2\\)</span>, <span>\\(N\\ge 1\\)</span> and <span>\\(T&gt;0\\)</span>. We are concerned with the Cauchy problem for the fractional semilinear parabolic equation </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\partial _t u+(-\\Delta )^{\\theta /2}u=f(u) &amp;{} \\text {in}\\ {{\\mathbb {R}}^N}\\times (0,T),\\\\ u(x,0)=u_0 (x)\\ge 0 &amp;{} \\text {in}\\ {{\\mathbb {R}}^N}. \\end{array}\\right. } \\end{aligned}$$</span><p>Here, <span>\\(f\\in C[0,\\infty )\\)</span> denotes a rather general growing nonlinearity and <span>\\(u_0\\)</span> may be unbounded. We study local in time solvability in the so-called critical and doubly critical cases. In particular, when <span>\\(f(u)=u^{1+{\\theta }/{N}}\\left[ \\log (u+e)\\right] ^{a}\\)</span>, we obtain a sharp integrability condition on <span>\\(u_0\\)</span> which explicitly determines local in time existence/nonexistence of a nonnegative solution.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00967-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(0<\theta \le 2\), \(N\ge 1\) and \(T>0\). We are concerned with the Cauchy problem for the fractional semilinear parabolic equation

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u+(-\Delta )^{\theta /2}u=f(u) &{} \text {in}\ {{\mathbb {R}}^N}\times (0,T),\\ u(x,0)=u_0 (x)\ge 0 &{} \text {in}\ {{\mathbb {R}}^N}. \end{array}\right. } \end{aligned}$$

Here, \(f\in C[0,\infty )\) denotes a rather general growing nonlinearity and \(u_0\) may be unbounded. We study local in time solvability in the so-called critical and doubly critical cases. In particular, when \(f(u)=u^{1+{\theta }/{N}}\left[ \log (u+e)\right] ^{a}\), we obtain a sharp integrability condition on \(u_0\) which explicitly determines local in time existence/nonexistence of a nonnegative solution.

临界和双临界情况下分数半线性抛物方程考希问题的可解性
让 \(0<θ\le 2\), \(N\ge 1\) and\(T>0\).我们关注的是分数半线性抛物方程的考奇问题 $$\begin{aligned} {\left\{ \begin{array}{ll}\partial _t u+(-\Delta )^{\theta /2}u=f(u) &{}\text {in}\ {{mathbb {R}}^N}\times (0,T),\ u(x,0)=u_0 (x)\ge 0 &{}\text {in}\ {{mathbb {R}}^N}.\end{array}\right.}\end{aligned}$Here, \(f\in C[0,\infty )\) denotes a rather general growing nonlinearity and \(u_0\) may be unbounded.我们研究了所谓临界和双临界情况下的局部时间可解性。特别是当\(f(u)=u^{1+{theta }/{N}}left[ \log (u+e)\right] ^{a}\)时,我们得到了一个关于\(u_0\)的尖锐的可整性条件,它明确地决定了非负解在时间上的局部存在/不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信