Triangle Percolation on the Grid

Pub Date : 2024-04-25 DOI:10.1007/s00454-024-00645-x
Igor Araujo, Bryce Frederickson, Robert A. Krueger, Bernard Lidický, Tyrrell B. McAllister, Florian Pfender, Sam Spiro, Eric Nathan Stucky
{"title":"Triangle Percolation on the Grid","authors":"Igor Araujo, Bryce Frederickson, Robert A. Krueger, Bernard Lidický, Tyrrell B. McAllister, Florian Pfender, Sam Spiro, Eric Nathan Stucky","doi":"10.1007/s00454-024-00645-x","DOIUrl":null,"url":null,"abstract":"<p>We consider a geometric percolation process partially motivated by recent work of Hejda and Kala. Specifically, we start with an initial set <span>\\(X \\subseteq {\\mathbb {Z}}^2\\)</span>, and then iteratively check whether there exists a triangle <span>\\(T \\subseteq {\\mathbb {R}}^2\\)</span> with its vertices in <span>\\({\\mathbb {Z}}^2\\)</span> such that <i>T</i> contains exactly four points of <span>\\({\\mathbb {Z}}^2\\)</span> and exactly three points of <i>X</i>. In this case, we add the missing lattice point of <i>T</i> to <i>X</i>, and we repeat until no such triangle exists. We study the limit sets <i>S</i>, the sets stable under this process, including determining their possible densities and some of their structure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00645-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a geometric percolation process partially motivated by recent work of Hejda and Kala. Specifically, we start with an initial set \(X \subseteq {\mathbb {Z}}^2\), and then iteratively check whether there exists a triangle \(T \subseteq {\mathbb {R}}^2\) with its vertices in \({\mathbb {Z}}^2\) such that T contains exactly four points of \({\mathbb {Z}}^2\) and exactly three points of X. In this case, we add the missing lattice point of T to X, and we repeat until no such triangle exists. We study the limit sets S, the sets stable under this process, including determining their possible densities and some of their structure.

Abstract Image

分享
查看原文
网格上的三角渗透
我们考虑了一个几何渗流过程,其部分动机来自 Hejda 和 Kala 的最新研究。具体来说,我们从一个初始集合(X)开始,然后迭代检查是否存在一个顶点在(X)中的三角形(T),使得 T 包含了(X)的四个点和三个点。在这种情况下,我们把 T 中缺失的网格点添加到 X 中,如此重复直到不存在这样的三角形为止。我们将研究极限集合 S,即在此过程中稳定的集合,包括确定它们可能的密度及其部分结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信