Matrix Mean Inequalities for Sector Matrices

IF 0.7 4区 数学 Q2 MATHEMATICS
Maryam Khosravi, Alemeh Sheikhhosseini, Somayeh Malekinejad
{"title":"Matrix Mean Inequalities for Sector Matrices","authors":"Maryam Khosravi, Alemeh Sheikhhosseini, Somayeh Malekinejad","doi":"10.1007/s11785-024-01531-3","DOIUrl":null,"url":null,"abstract":"<p>In this note, some inequalities involving matrix means of sectorial matrices are proved which are generalizations and refinements of previous known results. Among them, let <i>A</i> and <i>B</i> be two accretive matrices with <span>\\(A,B\\in \\mathcal {S}_{\\theta }\\)</span>, <span>\\(0 &lt; mI \\leqslant A, B \\leqslant MI\\)</span> for positive real numbers <i>M</i> and <i>m</i>. If <span>\\(\\sigma ,\\sigma _1,\\sigma _2\\)</span> are matrix means such that <span>\\(\\sigma ^*\\leqslant \\sigma _1,\\sigma _2\\leqslant \\sigma \\)</span>, where <span>\\(\\sigma ^*\\)</span> is the adjoint of <span>\\(\\sigma \\)</span> and <span>\\(\\Phi \\)</span> is a positive unital linear map, then for each <span>\\(p&gt;0\\)</span>, </p><span>$$\\Phi ^{p}\\Re (A \\sigma _{1} B) \\leqslant \\sec ^{2p}\\theta \\alpha ^{p} \\Phi ^{p}\\Re (A \\sigma _{2} B),$$</span><p>where </p><span>$$ \\alpha = \\max \\left\\{ K, 4^{1-\\frac{2}{p}}K \\right\\} ,$$</span><p>and <span>\\( K= \\frac{(M+m)^2}{4mM}\\)</span> is the Kantorovich constant.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01531-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, some inequalities involving matrix means of sectorial matrices are proved which are generalizations and refinements of previous known results. Among them, let A and B be two accretive matrices with \(A,B\in \mathcal {S}_{\theta }\), \(0 < mI \leqslant A, B \leqslant MI\) for positive real numbers M and m. If \(\sigma ,\sigma _1,\sigma _2\) are matrix means such that \(\sigma ^*\leqslant \sigma _1,\sigma _2\leqslant \sigma \), where \(\sigma ^*\) is the adjoint of \(\sigma \) and \(\Phi \) is a positive unital linear map, then for each \(p>0\),

$$\Phi ^{p}\Re (A \sigma _{1} B) \leqslant \sec ^{2p}\theta \alpha ^{p} \Phi ^{p}\Re (A \sigma _{2} B),$$

where

$$ \alpha = \max \left\{ K, 4^{1-\frac{2}{p}}K \right\} ,$$

and \( K= \frac{(M+m)^2}{4mM}\) is the Kantorovich constant.

扇形矩阵的矩阵均值不等式
本文证明了一些涉及扇形矩阵的矩阵手段的不等式,这些不等式是对以往已知结果的概括和完善。其中,设 A 和 B 是两个增量矩阵,对于正实数 M 和 m,具有 (A,B\in \mathcal {S}_{\theta }\), (0 < mI \leqslant A, B \leqslant MI\ )。如果 \(\sigma ,\sigma _1,\sigma _2\) 都是矩阵均值,使得 \(\sigma ^*\leqslant \sigma _1,\sigma _2\leqslant \sigma \)、其中 \(\sigma ^*\)是 \(\sigma \)的邻接,而 \(\Phi \)是一个正的单值线性映射,那么对于每个 \(p>;0), $$\Phi ^{p}\Re (A \sigma _{1} B) \leqslant \sec ^{2p}\theta \alpha ^{p}\Phi ^{p}\Re (A \sigma _{2} B),$$where $$ \alpha = \max \left\{ K, 4^{1-\frac{2}{p}}K \right\}$$ and \( K= \frac{(M+m)^2}{4mM}\) is the Kantorovich constant.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信