{"title":"Efficient multimode vectorial nonlinear propagation solver beyond the weak guidance approximation","authors":"Pierre Béjot","doi":"10.1364/josab.521161","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient numerical model able to solve the vectorial nonlinear pulse propagation equation in circularly symmetric multimode waveguides. The algorithm takes advantage of the conservation of total angular momentum of light upon propagation and takes into account the vectorial nature of the propagating modes, making it particularly relevant for studies in ring-core fibers. While conventional propagation solvers exhibit a computational complexity scaling as <span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>N</mi><mrow><mrow><mi mathvariant=\"normal\">m</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">e</mi></mrow></mrow><mn>4</mn></msubsup></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.999em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.587em; height: 0px; font-size: 114%;\"><span style=\"position: absolute; clip: rect(1.342em, 1002.59em, 2.95em, -1000em); top: -2.383em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 2.568em; height: 0px;\"><span style=\"position: absolute; clip: rect(4.21em, 1000.75em, 5.322em, -1000em); top: -5.107em; left: 0em;\"><span style=\"font-family: GyrePagellaMathJax_Normal;\">𝑁<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.026em;\"></span></span><span style=\"display: inline-block; width: 0px; height: 5.107em;\"></span></span><span style=\"position: absolute; clip: rect(3.254em, 1000.41em, 4.155em, -1000em); top: -4.296em; left: 0.807em;\"><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">4</span><span style=\"display: inline-block; width: 0px; height: 3.949em;\"></span></span><span style=\"position: absolute; clip: rect(3.231em, 1001.85em, 4.167em, -1000em); top: -3.6em; left: 0.723em;\"><span><span><span><span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">m</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">o</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">d</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">e</span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.949em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.383em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.492em; border-left: 0px solid; width: 0px; height: 1.524em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>N</mi><mrow><mrow><mi mathvariant=\"normal\">m</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">e</mi></mrow></mrow><mn>4</mn></msubsup></math></span></span><script type=\"math/tex\">N_{{\\rm mode}}^4</script></span>, where <span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>N</mi><mrow><mrow><mi mathvariant=\"normal\">m</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">e</mi></mrow></mrow></msub></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.999em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.587em; height: 0px; font-size: 114%;\"><span style=\"position: absolute; clip: rect(1.487em, 1002.59em, 2.77em, -1000em); top: -2.383em; left: 0em;\"><span><span><span><span><span style=\"display: inline-block; position: relative; width: 2.568em; height: 0px;\"><span style=\"position: absolute; clip: rect(4.21em, 1000.75em, 5.322em, -1000em); top: -5.107em; left: 0em;\"><span style=\"font-family: GyrePagellaMathJax_Normal;\">𝑁<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.026em;\"></span></span><span style=\"display: inline-block; width: 0px; height: 5.107em;\"></span></span><span style=\"position: absolute; top: -3.78em; left: 0.723em;\"><span><span><span><span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">m</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">o</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">d</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">e</span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.949em;\"></span></span></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.383em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.286em; border-left: 0px solid; width: 0px; height: 1.153em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>N</mi><mrow><mrow><mi mathvariant=\"normal\">m</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">e</mi></mrow></mrow></msub></mrow></math></span></span><script type=\"math/tex\">{N_{{\\rm mode}}}</script></span> is the number of considered modes, the present solver scales as <span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>N</mi><mrow><mrow><mi mathvariant=\"normal\">m</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">e</mi></mrow></mrow><mrow><mn>3</mn><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msubsup></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.999em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.587em; height: 0px; font-size: 114%;\"><span style=\"position: absolute; clip: rect(1.241em, 1002.59em, 2.95em, -1000em); top: -2.383em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 2.568em; height: 0px;\"><span style=\"position: absolute; clip: rect(4.21em, 1000.75em, 5.322em, -1000em); top: -5.107em; left: 0em;\"><span style=\"font-family: GyrePagellaMathJax_Normal;\">𝑁<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.026em;\"></span></span><span style=\"display: inline-block; width: 0px; height: 5.107em;\"></span></span><span style=\"position: absolute; clip: rect(3.258em, 1001.1em, 4.259em, -1000em); top: -4.4em; left: 0.807em;\"><span><span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">3</span><span><span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">/</span></span></span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 3.949em;\"></span></span><span style=\"position: absolute; clip: rect(3.231em, 1001.85em, 4.167em, -1000em); top: -3.6em; left: 0.723em;\"><span><span><span><span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">m</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">o</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">d</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">e</span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.949em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.383em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.492em; border-left: 0px solid; width: 0px; height: 1.638em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>N</mi><mrow><mrow><mi mathvariant=\"normal\">m</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">e</mi></mrow></mrow><mrow><mn>3</mn><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msubsup></math></span></span><script type=\"math/tex\">N_{{\\rm mode}}^{3/2}</script></span>. As a first example, it is shown that orbital angular momentum modulation instability processes take place in ring-core fibers in realistic conditions. Finally, it is predicted that the modulation instability process is followed by the appearance of breather-like angular structures.","PeriodicalId":501621,"journal":{"name":"Journal of the Optical Society of America B","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.521161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present an efficient numerical model able to solve the vectorial nonlinear pulse propagation equation in circularly symmetric multimode waveguides. The algorithm takes advantage of the conservation of total angular momentum of light upon propagation and takes into account the vectorial nature of the propagating modes, making it particularly relevant for studies in ring-core fibers. While conventional propagation solvers exhibit a computational complexity scaling as 𝑁4mode, where 𝑁mode is the number of considered modes, the present solver scales as 𝑁3/2mode. As a first example, it is shown that orbital angular momentum modulation instability processes take place in ring-core fibers in realistic conditions. Finally, it is predicted that the modulation instability process is followed by the appearance of breather-like angular structures.