Efficient multimode vectorial nonlinear propagation solver beyond the weak guidance approximation

Pierre Béjot
{"title":"Efficient multimode vectorial nonlinear propagation solver beyond the weak guidance approximation","authors":"Pierre Béjot","doi":"10.1364/josab.521161","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient numerical model able to solve the vectorial nonlinear pulse propagation equation in circularly symmetric multimode waveguides. The algorithm takes advantage of the conservation of total angular momentum of light upon propagation and takes into account the vectorial nature of the propagating modes, making it particularly relevant for studies in ring-core fibers. While conventional propagation solvers exhibit a computational complexity scaling as <span><span style=\"color: inherit; display: none;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;m&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;o&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;d&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.999em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.587em; height: 0px; font-size: 114%;\"><span style=\"position: absolute; clip: rect(1.342em, 1002.59em, 2.95em, -1000em); top: -2.383em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 2.568em; height: 0px;\"><span style=\"position: absolute; clip: rect(4.21em, 1000.75em, 5.322em, -1000em); top: -5.107em; left: 0em;\"><span style=\"font-family: GyrePagellaMathJax_Normal;\">𝑁<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.026em;\"></span></span><span style=\"display: inline-block; width: 0px; height: 5.107em;\"></span></span><span style=\"position: absolute; clip: rect(3.254em, 1000.41em, 4.155em, -1000em); top: -4.296em; left: 0.807em;\"><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">4</span><span style=\"display: inline-block; width: 0px; height: 3.949em;\"></span></span><span style=\"position: absolute; clip: rect(3.231em, 1001.85em, 4.167em, -1000em); top: -3.6em; left: 0.723em;\"><span><span><span><span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">m</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">o</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">d</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">e</span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.949em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.383em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.492em; border-left: 0px solid; width: 0px; height: 1.524em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>N</mi><mrow><mrow><mi mathvariant=\"normal\">m</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">e</mi></mrow></mrow><mn>4</mn></msubsup></math></span></span><script type=\"math/tex\">N_{{\\rm mode}}^4</script></span>, where <span><span style=\"color: inherit; display: none;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;m&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;o&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;d&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.999em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.587em; height: 0px; font-size: 114%;\"><span style=\"position: absolute; clip: rect(1.487em, 1002.59em, 2.77em, -1000em); top: -2.383em; left: 0em;\"><span><span><span><span><span style=\"display: inline-block; position: relative; width: 2.568em; height: 0px;\"><span style=\"position: absolute; clip: rect(4.21em, 1000.75em, 5.322em, -1000em); top: -5.107em; left: 0em;\"><span style=\"font-family: GyrePagellaMathJax_Normal;\">𝑁<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.026em;\"></span></span><span style=\"display: inline-block; width: 0px; height: 5.107em;\"></span></span><span style=\"position: absolute; top: -3.78em; left: 0.723em;\"><span><span><span><span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">m</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">o</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">d</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">e</span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.949em;\"></span></span></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.383em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.286em; border-left: 0px solid; width: 0px; height: 1.153em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>N</mi><mrow><mrow><mi mathvariant=\"normal\">m</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">e</mi></mrow></mrow></msub></mrow></math></span></span><script type=\"math/tex\">{N_{{\\rm mode}}}</script></span> is the number of considered modes, the present solver scales as <span><span style=\"color: inherit; display: none;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;m&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;o&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;d&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.999em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.587em; height: 0px; font-size: 114%;\"><span style=\"position: absolute; clip: rect(1.241em, 1002.59em, 2.95em, -1000em); top: -2.383em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 2.568em; height: 0px;\"><span style=\"position: absolute; clip: rect(4.21em, 1000.75em, 5.322em, -1000em); top: -5.107em; left: 0em;\"><span style=\"font-family: GyrePagellaMathJax_Normal;\">𝑁<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.026em;\"></span></span><span style=\"display: inline-block; width: 0px; height: 5.107em;\"></span></span><span style=\"position: absolute; clip: rect(3.258em, 1001.1em, 4.259em, -1000em); top: -4.4em; left: 0.807em;\"><span><span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">3</span><span><span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">/</span></span></span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 3.949em;\"></span></span><span style=\"position: absolute; clip: rect(3.231em, 1001.85em, 4.167em, -1000em); top: -3.6em; left: 0.723em;\"><span><span><span><span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">m</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">o</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">d</span><span style=\"font-size: 70.7%; font-family: GyrePagellaMathJax_Main;\">e</span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.949em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.383em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.492em; border-left: 0px solid; width: 0px; height: 1.638em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>N</mi><mrow><mrow><mi mathvariant=\"normal\">m</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">e</mi></mrow></mrow><mrow><mn>3</mn><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msubsup></math></span></span><script type=\"math/tex\">N_{{\\rm mode}}^{3/2}</script></span>. As a first example, it is shown that orbital angular momentum modulation instability processes take place in ring-core fibers in realistic conditions. Finally, it is predicted that the modulation instability process is followed by the appearance of breather-like angular structures.","PeriodicalId":501621,"journal":{"name":"Journal of the Optical Society of America B","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.521161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an efficient numerical model able to solve the vectorial nonlinear pulse propagation equation in circularly symmetric multimode waveguides. The algorithm takes advantage of the conservation of total angular momentum of light upon propagation and takes into account the vectorial nature of the propagating modes, making it particularly relevant for studies in ring-core fibers. While conventional propagation solvers exhibit a computational complexity scaling as Nmode4, where Nmode is the number of considered modes, the present solver scales as Nmode3/2. As a first example, it is shown that orbital angular momentum modulation instability processes take place in ring-core fibers in realistic conditions. Finally, it is predicted that the modulation instability process is followed by the appearance of breather-like angular structures.
超越弱引导近似的高效多模矢量非线性传播求解器
在本文中,我们提出了一种高效的数值模型,能够求解圆形对称多模波导中的矢量非线性脉冲传播方程。该算法利用了光在传播过程中的总角动量守恒,并考虑了传播模式的矢量性质,因此特别适用于环芯光纤中的研究。传统的传播求解器的计算复杂度按𝑁4modeNmode4N_{{/{rm mode}}^4的比例缩放,其中𝑁modeNmode{N_{{/{rm mode}}是考虑的模式数,而本求解器的计算复杂度按𝑁3/2modeNmode3/2N_{{/{rm mode}}^{3/2}的比例缩放。}作为第一个例子,它表明轨道角动量调制不稳定性过程在现实条件下发生在环芯光纤中。最后,预测调制不稳定性过程之后会出现类似呼吸的角结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信