{"title":"On the Second Order Sufficient Optimality Conditions for a Problem of Mathematical Programming","authors":"A. V. Arutyunov, S. E. Zhukovskiy","doi":"10.1134/s0001434624010140","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider the constrained optimization problem for a smooth function defined on a Banach space with smooth constraints of equality and inequality type. We show that for this problem, under the known sufficient second-order optimality conditions, the set of Lagrange multipliers can be replaced by a smaller set. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624010140","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the constrained optimization problem for a smooth function defined on a Banach space with smooth constraints of equality and inequality type. We show that for this problem, under the known sufficient second-order optimality conditions, the set of Lagrange multipliers can be replaced by a smaller set.
期刊介绍:
Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.