Refined symmetry-resolved Page curve and charged black holes* * Supported in part by the Natural Science Foundation of China (12035016, 12275275). It is also supported by the Beijing Natural Science Foundation (1222031) and the Innovative Projects of Science and Technology ( E2545BU210) at IHEP.

IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
Pan Li, Yi Ling
{"title":"Refined symmetry-resolved Page curve and charged black holes* * Supported in part by the Natural Science Foundation of China (12035016, 12275275). It is also supported by the Beijing Natural Science Foundation (1222031) and the Innovative Projects of Science and Technology ( E2545BU210) at IHEP.","authors":"Pan Li, Yi Ling","doi":"10.1088/1674-1137/ad2e83","DOIUrl":null,"url":null,"abstract":"The Page curve plotted using the typical random state approximation is not applicable to a system with conserved quantities, such as the evaporation process of a charged black hole, during which the electric charge does not macroscopically radiate out with a uniform rate. In this context, the symmetry-resolved entanglement entropy may play a significant role in describing the entanglement structure of such a system. We attempt to impose constraints on microscopic quantum states to match the macroscopic phenomenon of charge radiation during black hole evaporation. Specifically, we consider a simple qubit system with conserved spin/charge serving as a toy model for the evaporation of charged black holes. We propose refined rules for selecting a random state with conserved quantities to simulate the distribution of charges during the different stages of evaporation and obtain refined Page curves that exhibit distinct features in contrast to the original Page curve. We find that the refined Page curve may have a different Page time and exhibit asymmetric behavior on both sides of the Page time. Such refined Page curves may provide a more realistic description for the entanglement between the charged black hole and radiation during the evaporation process.","PeriodicalId":10250,"journal":{"name":"Chinese Physics C","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad2e83","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The Page curve plotted using the typical random state approximation is not applicable to a system with conserved quantities, such as the evaporation process of a charged black hole, during which the electric charge does not macroscopically radiate out with a uniform rate. In this context, the symmetry-resolved entanglement entropy may play a significant role in describing the entanglement structure of such a system. We attempt to impose constraints on microscopic quantum states to match the macroscopic phenomenon of charge radiation during black hole evaporation. Specifically, we consider a simple qubit system with conserved spin/charge serving as a toy model for the evaporation of charged black holes. We propose refined rules for selecting a random state with conserved quantities to simulate the distribution of charges during the different stages of evaporation and obtain refined Page curves that exhibit distinct features in contrast to the original Page curve. We find that the refined Page curve may have a different Page time and exhibit asymmetric behavior on both sides of the Page time. Such refined Page curves may provide a more realistic description for the entanglement between the charged black hole and radiation during the evaporation process.
精确对称分辨的佩奇曲线和带电黑洞* * 部分得到中国自然科学基金(12035016,12275275)的支持。该研究还得到了北京市自然科学基金(1222031)和 IHEP 科技创新项目(E2545BU210)的支持。
使用典型随机态近似绘制的佩奇曲线不适用于数量守恒的系统,例如带电黑洞的蒸发过程,在这一过程中,电荷不会以均匀的速率宏观地辐射出去。在这种情况下,对称分辨的纠缠熵可能会在描述这种系统的纠缠结构中发挥重要作用。我们试图对微观量子态施加约束,以匹配黑洞蒸发过程中电荷辐射的宏观现象。具体来说,我们将一个自旋/电荷守恒的简单量子比特系统作为带电黑洞蒸发的玩具模型。我们提出了选择具有守恒量的随机状态的细化规则,以模拟不同蒸发阶段的电荷分布,并得到了与原始佩奇曲线截然不同的细化佩奇曲线。我们发现,细化的佩奇曲线可能具有不同的佩奇时间,并在佩奇时间两侧表现出不对称行为。这种细化的佩奇曲线可以更真实地描述蒸发过程中带电黑洞与辐射之间的纠缠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Physics C
Chinese Physics C 物理-物理:核物理
CiteScore
6.50
自引率
8.30%
发文量
8976
审稿时长
1.3 months
期刊介绍: Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of: Particle physics; Nuclear physics; Particle and nuclear astrophysics; Cosmology; Accelerator physics. The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication. The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal. The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信