{"title":"Effects of adding phthalocyanine to gasoline fuel on engine performance and exhaust emissions in spark ignition engine","authors":"ahmet yakin, Beyza CABİR","doi":"10.1615/heattransres.2024052012","DOIUrl":null,"url":null,"abstract":"In this study, phthalocyanines as fuel additives were added to petrol fuel at different ratios by volume and tested in terms of engine performance and exhaust emissions. In the experimental study, the change in engine torque of PG5, PG15, and PG25 blended fuels compared to gasoline fuel was 3.5% decrease, 0.37% increase, and 3.59% increase, respectively. Specific fuel consumption decreased by 6.09% for PG5 fuel, 3.53% for PG15 fuel, and 5.08% for PG25 fuel compared to petrol fuel. Exhaust gas temperature increased by 7.18%, decreased by 0.39%, and decreased by 3.31% with the use of PG5, PG15, PG25 fuels compared to petrol fuel, respectively. CO emissions of PG5, PG15, and PG25 blended fuels decreased by 58.88%, 46.99%, and 53.19% respectively compared to gasoline fuel. HC, CO2, and NOx emissions of blended fuels increased compared to petrol fuel. Phthalocyanines additives are a type of fuel additive that can help to reduce both fuel consumption and harmful emissions. This can lead to a decrease in vehicle-related environmental pollution.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024052012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, phthalocyanines as fuel additives were added to petrol fuel at different ratios by volume and tested in terms of engine performance and exhaust emissions. In the experimental study, the change in engine torque of PG5, PG15, and PG25 blended fuels compared to gasoline fuel was 3.5% decrease, 0.37% increase, and 3.59% increase, respectively. Specific fuel consumption decreased by 6.09% for PG5 fuel, 3.53% for PG15 fuel, and 5.08% for PG25 fuel compared to petrol fuel. Exhaust gas temperature increased by 7.18%, decreased by 0.39%, and decreased by 3.31% with the use of PG5, PG15, PG25 fuels compared to petrol fuel, respectively. CO emissions of PG5, PG15, and PG25 blended fuels decreased by 58.88%, 46.99%, and 53.19% respectively compared to gasoline fuel. HC, CO2, and NOx emissions of blended fuels increased compared to petrol fuel. Phthalocyanines additives are a type of fuel additive that can help to reduce both fuel consumption and harmful emissions. This can lead to a decrease in vehicle-related environmental pollution.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.