{"title":"A Facial Order for Torsion Classes","authors":"Eric J Hanson","doi":"10.1093/imrn/rnae078","DOIUrl":null,"url":null,"abstract":"We generalize the “facial weak order” of a finite Coxeter group to a partial order on a set of intervals in a complete lattice. We apply our construction to the lattice of torsion classes of a finite-dimensional algebra and consider its restriction to intervals coming from stability conditions. We give two additional interpretations of the resulting “facial semistable order”: one using cover relations, and one using Bongartz completions of 2-term presilting objects. For $\\tau $-tilting finite algebras, this allows us to prove that the facial semistable order is a semidistributive lattice. We then show that, in any abelian length category, our new partial order can be partitioned into a set of completely semidistributive lattices, one of which is the original lattice of torsion classes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We generalize the “facial weak order” of a finite Coxeter group to a partial order on a set of intervals in a complete lattice. We apply our construction to the lattice of torsion classes of a finite-dimensional algebra and consider its restriction to intervals coming from stability conditions. We give two additional interpretations of the resulting “facial semistable order”: one using cover relations, and one using Bongartz completions of 2-term presilting objects. For $\tau $-tilting finite algebras, this allows us to prove that the facial semistable order is a semidistributive lattice. We then show that, in any abelian length category, our new partial order can be partitioned into a set of completely semidistributive lattices, one of which is the original lattice of torsion classes.