Log-Concavity of the Alexander Polynomial

Pub Date : 2024-04-23 DOI:10.1093/imrn/rnae058
Elena S Hafner, Karola Mészáros, Alexander Vidinas
{"title":"Log-Concavity of the Alexander Polynomial","authors":"Elena S Hafner, Karola Mészáros, Alexander Vidinas","doi":"10.1093/imrn/rnae058","DOIUrl":null,"url":null,"abstract":"The central question of knot theory is that of distinguishing links up to isotopy. The first polynomial invariant of links devised to help answer this question was the Alexander polynomial (1928). Almost a century after its introduction, it still presents us with tantalizing questions, such as Fox’s conjecture (1962) that the absolute values of the coefficients of the Alexander polynomial $\\Delta _{L}(t)$ of an alternating link $L$ are unimodal. Fox’s conjecture remains open in general with special cases settled by Hartley (1979) for two-bridge knots, by Murasugi (1985) for a family of alternating algebraic links, and by Ozsváth and Szabó (2003) for the case of genus $2$ alternating knots, among others. We settle Fox’s conjecture for special alternating links. We do so by proving that a certain multivariate generalization of the Alexander polynomial of special alternating links is Lorentzian. As a consequence, we obtain that the absolute values of the coefficients of $\\Delta _{L}(t)$, where $L$ is a special alternating link, form a log-concave sequence with no internal zeros. In particular, they are unimodal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The central question of knot theory is that of distinguishing links up to isotopy. The first polynomial invariant of links devised to help answer this question was the Alexander polynomial (1928). Almost a century after its introduction, it still presents us with tantalizing questions, such as Fox’s conjecture (1962) that the absolute values of the coefficients of the Alexander polynomial $\Delta _{L}(t)$ of an alternating link $L$ are unimodal. Fox’s conjecture remains open in general with special cases settled by Hartley (1979) for two-bridge knots, by Murasugi (1985) for a family of alternating algebraic links, and by Ozsváth and Szabó (2003) for the case of genus $2$ alternating knots, among others. We settle Fox’s conjecture for special alternating links. We do so by proving that a certain multivariate generalization of the Alexander polynomial of special alternating links is Lorentzian. As a consequence, we obtain that the absolute values of the coefficients of $\Delta _{L}(t)$, where $L$ is a special alternating link, form a log-concave sequence with no internal zeros. In particular, they are unimodal.
分享
查看原文
亚历山大多项式的对数凹性
绳结理论的核心问题是如何区分直到同位的链接。亚历山大多项式(1928 年)是第一个为帮助回答这一问题而设计的链接多项式不变量。亚历山大多项式问世近一个世纪后,它仍然向我们提出了一些诱人的问题,例如福克斯(1962)的猜想:交替链接 $L$ 的亚历山大多项式 $\Delta _{L}(t)$ 的系数的绝对值是单模态的。福克斯猜想在一般情况下仍未解决,哈特利(1979)解决了双桥结的特殊情况,村杉(1985)解决了交替代数链节族的特殊情况,奥兹瓦特和萨博(2003)解决了属2元交替结的特殊情况。我们解决了福克斯对特殊交替链节的猜想。为此,我们证明了特殊交替链节的亚历山大多项式的某一多元广义是洛伦兹的。因此,我们得到,$\Delta _{L}(t)$(其中$L$为特殊交替链路)系数的绝对值构成了一个没有内部零点的对数凹序列。尤其是,它们是单模态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信