A Construction of Deformations to General Algebras

Pub Date : 2024-04-22 DOI:10.1093/imrn/rnae077
David Bowman, Dora Puljić, Agata Smoktunowicz
{"title":"A Construction of Deformations to General Algebras","authors":"David Bowman, Dora Puljić, Agata Smoktunowicz","doi":"10.1093/imrn/rnae077","DOIUrl":null,"url":null,"abstract":"One of the questions investigated in deformation theory is to determine to which algebras can a given associative algebra be deformed. In this paper we investigate a different but related question, namely: for a given associative finite-dimensional ${\\mathbb{C}}$-algebra $A$, find algebras $N$, which can be deformed to $A$. We develop a simple method that produces associative and flat deformations to investigate this question. As an application of this method we answer a question of Michael Wemyss about deformations of contraction algebras.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the questions investigated in deformation theory is to determine to which algebras can a given associative algebra be deformed. In this paper we investigate a different but related question, namely: for a given associative finite-dimensional ${\mathbb{C}}$-algebra $A$, find algebras $N$, which can be deformed to $A$. We develop a simple method that produces associative and flat deformations to investigate this question. As an application of this method we answer a question of Michael Wemyss about deformations of contraction algebras.
分享
查看原文
通用代数的变形构造
变形理论研究的问题之一是确定给定的关联代数可以变形为哪些代数。在本文中,我们研究了一个不同但相关的问题,即:对于给定的关联有限维 ${mathbb{C}}$ 代数 $A$,找出可以变形为 $A$ 的代数 $N$。我们开发了一种简单的方法来研究这个问题,这种方法可以产生联立和平面变形。作为这种方法的应用,我们回答了迈克尔-韦米斯(Michael Wemyss)关于收缩代数的变形的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信