Pricing of European Calls with the Quantum Fourier Transform

Tom Ewen
{"title":"Pricing of European Calls with the Quantum Fourier Transform","authors":"Tom Ewen","doi":"arxiv-2404.14115","DOIUrl":null,"url":null,"abstract":"The accurate valuation of financial derivatives plays a pivotal role in the\nfinance industry. Although closed formulas for pricing are available for\ncertain models and option types, exemplified by the European Call and Put\noptions in the Black-Scholes Model, the use of either more complex models or\nmore sophisticated options precludes the existence of such formulas, thereby\nrequiring alternative approaches. The Monte Carlo simulation, an alternative\napproach effective in nearly all scenarios, has already been challenged by\nquantum computing techniques that leverage Amplitude Estimation. Despite its\ntheoretical promise, this approach currently faces limitations due to the\nconstraints of hardware in the Noisy Intermediate-Scale Quantum (NISQ) era. In this study, we introduce and analyze a quantum algorithm for pricing\nEuropean call options across a broad spectrum of asset models. This method\ntransforms a classical approach, which utilizes the Fast Fourier Transform\n(FFT), into a quantum algorithm, leveraging the efficiency of the Quantum\nFourier Transform (QFT). Furthermore, we compare this novel algorithm with\nexisting quantum algorithms for option pricing.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.14115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate valuation of financial derivatives plays a pivotal role in the finance industry. Although closed formulas for pricing are available for certain models and option types, exemplified by the European Call and Put options in the Black-Scholes Model, the use of either more complex models or more sophisticated options precludes the existence of such formulas, thereby requiring alternative approaches. The Monte Carlo simulation, an alternative approach effective in nearly all scenarios, has already been challenged by quantum computing techniques that leverage Amplitude Estimation. Despite its theoretical promise, this approach currently faces limitations due to the constraints of hardware in the Noisy Intermediate-Scale Quantum (NISQ) era. In this study, we introduce and analyze a quantum algorithm for pricing European call options across a broad spectrum of asset models. This method transforms a classical approach, which utilizes the Fast Fourier Transform (FFT), into a quantum algorithm, leveraging the efficiency of the Quantum Fourier Transform (QFT). Furthermore, we compare this novel algorithm with existing quantum algorithms for option pricing.
用量子傅立叶变换为欧洲通话定价
金融衍生品的准确估值在金融业起着举足轻重的作用。虽然某些模型和期权类型(如 Black-Scholes 模型中的欧式看涨期权和看跌期权)有封闭的定价公式,但使用更复杂的模型或更复杂的期权就不可能有这样的公式,因此需要采用其他方法。蒙特卡罗模拟是一种在几乎所有情况下都有效的替代方法,它已经受到了利用振幅估计的量子计算技术的挑战。尽管这种方法在理论上大有可为,但由于嘈杂中量子(NISQ)时代硬件的限制,它目前面临着种种局限。在本研究中,我们介绍并分析了一种量子算法,用于对多种资产模型中的欧洲看涨期权进行定价。该方法将利用快速傅立叶变换(FFT)的经典方法转化为量子算法,充分利用了量子傅立叶变换(QFT)的效率。此外,我们还将这种新算法与现有的期权定价量子算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信