The checkerboard copula and dependence concepts

Liyuan Lin, Ruodu Wang, Ruixun Zhang, Chaoyi Zhao
{"title":"The checkerboard copula and dependence concepts","authors":"Liyuan Lin, Ruodu Wang, Ruixun Zhang, Chaoyi Zhao","doi":"arxiv-2404.15023","DOIUrl":null,"url":null,"abstract":"We study the problem of choosing the copula when the marginal distributions\nof a random vector are not all continuous. Inspired by three motivating\nexamples including simulation from copulas, stress scenarios, and co-risk\nmeasures, we propose to use the checkerboard copula, that is, intuitively, the\nunique copula with a distribution that is as uniform as possible within regions\nof flexibility. We show that the checkerboard copula has the largest Shannon\nentropy, which means that it carries the least information among all possible\ncopulas for a given random vector. Furthermore, the checkerboard copula\npreserves the dependence information of the original random vector, leading to\ntwo applications in the context of diversification penalty and impact\nportfolios.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"177 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.15023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of choosing the copula when the marginal distributions of a random vector are not all continuous. Inspired by three motivating examples including simulation from copulas, stress scenarios, and co-risk measures, we propose to use the checkerboard copula, that is, intuitively, the unique copula with a distribution that is as uniform as possible within regions of flexibility. We show that the checkerboard copula has the largest Shannon entropy, which means that it carries the least information among all possible copulas for a given random vector. Furthermore, the checkerboard copula preserves the dependence information of the original random vector, leading to two applications in the context of diversification penalty and impact portfolios.
棋盘式协程和依赖性概念
我们研究了当随机向量的边际分布不全是连续的时候如何选择协整的问题。受共模、压力情景和共同风险度量模拟等三个激励性示例的启发,我们建议使用棋盘共模,直观地说,就是在弹性区域内分布尽可能均匀的唯一共模。我们的研究表明,棋盘式 copula 具有最大的 Shannonentropy,这意味着它在给定随机向量的所有可能 copula 中携带的信息最少。此外,棋盘式共线公式保留了原始随机向量的依赖性信息,从而在分散化惩罚和影响投资组合中得到了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信