Functional Uniform-in-Bandwidth Moderate Deviation Principle for the Local Empirical Processes Involving Functional Data

IF 0.8 Q3 STATISTICS & PROBABILITY
Nour-Eddine Berrahou, Salim Bouzebda, Lahcen Douge
{"title":"Functional Uniform-in-Bandwidth Moderate Deviation Principle for the Local Empirical Processes Involving Functional Data","authors":"Nour-Eddine Berrahou, Salim Bouzebda, Lahcen Douge","doi":"10.3103/s1066530724700030","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Our research employs general empirical process methods to investigate and establish moderate deviation principles for kernel-type function estimators that rely on an infinite-dimensional covariate, subject to mild regularity conditions. In doing so, we introduce a valuable moderate deviation principle for a function-indexed process, utilizing intricate exponential contiguity arguments. The primary objective of this paper is to contribute to the existing literature on functional data analysis by establishing functional moderate deviation principles for both Nadaraya–Watson and conditional distribution processes. These principles serve as fundamental tools for analyzing and understanding the behavior of these processes in the context of functional data analysis. By extending the scope of moderate deviation principles to the realm of functional data analysis, we enhance our understanding of the statistical properties and limitations of kernel-type function estimators when dealing with infinite-dimensional covariates. Our findings provide valuable insights and contribute to the advancement of statistical methodology in functional data analysis.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530724700030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Our research employs general empirical process methods to investigate and establish moderate deviation principles for kernel-type function estimators that rely on an infinite-dimensional covariate, subject to mild regularity conditions. In doing so, we introduce a valuable moderate deviation principle for a function-indexed process, utilizing intricate exponential contiguity arguments. The primary objective of this paper is to contribute to the existing literature on functional data analysis by establishing functional moderate deviation principles for both Nadaraya–Watson and conditional distribution processes. These principles serve as fundamental tools for analyzing and understanding the behavior of these processes in the context of functional data analysis. By extending the scope of moderate deviation principles to the realm of functional data analysis, we enhance our understanding of the statistical properties and limitations of kernel-type function estimators when dealing with infinite-dimensional covariates. Our findings provide valuable insights and contribute to the advancement of statistical methodology in functional data analysis.

涉及函数数据的局部经验过程的函数统一带宽适度偏差原理
摘要我们的研究采用了一般经验过程方法,研究并建立了依赖于无穷维协变量的核型函数估计器的适度偏差原则,但须满足温和的正则性条件。在此过程中,我们利用错综复杂的指数连续性论证,为函数索引过程引入了有价值的适度偏差原理。本文的主要目的是通过建立纳达拉亚-沃森和条件分布过程的函数适度偏差原理,为现有的函数数据分析文献做出贡献。这些原则是在函数数据分析中分析和理解这些过程行为的基本工具。通过将中等偏差原理的范围扩展到函数数据分析领域,我们加深了对核型函数估计器在处理无限维协变量时的统计特性和局限性的理解。我们的研究结果提供了宝贵的见解,有助于推动函数数据分析统计方法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信