{"title":"The Potential Role of Sulfur during Granulite-facies Metamorphism, Oxidation, and Geochemical Transformation of the Granitoid Lower Crust","authors":"Daniel E. Harlov","doi":"10.1134/S0869591124010041","DOIUrl":null,"url":null,"abstract":"<p>The role of S during high-grade metamorphism is a topic that has not garnered much interest in the literature until recently. In this review, the role of S as an active component in high grade hypersaline fluids is reviewed per a series of regional studies involving orthopyroxene-bearing granulite-facies granitoids. These include the Shevaroy Block and Nilgiri Block, southern India; the Bamble Sector, southwest Norway; the Val Strona traverse of the Ivrea-Verbano Zone, northern Italy; and the Lewisian Complex, northwest Scotland. In each these terranes, S-bearing, high-grade, low H<sub>2</sub>O activity fluids are conjectured to have been present during granulite-facies metamorphism and to have contributed to the dehydration of the rock, the oxidation state of the rock, and trace element mobility, leaving behind pyrite and/or pyrrhotite as traces of its presence. The various mineral equilibria reactions between the various oxidation states of S in these fluids and the oxide and silicate minerals encountered by the fluid are explored and a coherent framework of interdependent chemical reactions are developed, which describe both oxidation of the rock and the formation of pyrite and pyrrhotite during both peak- and post-peak metamorphism.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0869591124010041","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The role of S during high-grade metamorphism is a topic that has not garnered much interest in the literature until recently. In this review, the role of S as an active component in high grade hypersaline fluids is reviewed per a series of regional studies involving orthopyroxene-bearing granulite-facies granitoids. These include the Shevaroy Block and Nilgiri Block, southern India; the Bamble Sector, southwest Norway; the Val Strona traverse of the Ivrea-Verbano Zone, northern Italy; and the Lewisian Complex, northwest Scotland. In each these terranes, S-bearing, high-grade, low H2O activity fluids are conjectured to have been present during granulite-facies metamorphism and to have contributed to the dehydration of the rock, the oxidation state of the rock, and trace element mobility, leaving behind pyrite and/or pyrrhotite as traces of its presence. The various mineral equilibria reactions between the various oxidation states of S in these fluids and the oxide and silicate minerals encountered by the fluid are explored and a coherent framework of interdependent chemical reactions are developed, which describe both oxidation of the rock and the formation of pyrite and pyrrhotite during both peak- and post-peak metamorphism.
摘要 S在高品位变质过程中的作用是一个直到最近才在文献中引起广泛关注的话题。在这篇综述中,通过一系列涉及含正辉石花岗岩成因花岗岩的区域研究,对S作为高品位超盐流体中活性成分的作用进行了综述。这些地区包括印度南部的谢瓦洛伊区块和尼尔吉里区块、挪威西南部的班布尔区块、意大利北部伊夫雷亚-韦尔巴诺区的瓦尔斯特罗纳横断面以及苏格兰西北部的刘易斯岩群。据推测,在这些地层中,花岗岩成因变质过程中都存在含 S 的高品位、低 H2O 活性流体,这些流体对岩石的脱水、岩石的氧化状态和微量元素的流动性起到了作用,并留下了黄铁矿和/或黄铁矿的痕迹。研究探讨了这些流体中各种氧化态的 S 与流体中遇到的氧化物和硅酸盐矿物之间的各种矿物平衡反应,并建立了一个相互依存的化学反应的连贯框架,该框架描述了高峰变质和后高峰变质过程中岩石的氧化以及黄铁矿和黄铁矿的形成。
期刊介绍:
Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.