Comparison of the performance of SWAT and hybrid M5P tree models in rainfall–runoff simulation

Shailesh Kumar, K. K. Pandey, Ajay Ahirwar
{"title":"Comparison of the performance of SWAT and hybrid M5P tree models in rainfall–runoff simulation","authors":"Shailesh Kumar, K. K. Pandey, Ajay Ahirwar","doi":"10.2166/wh.2024.022","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/4/10.2166_wh.2024.022/1/m_jwh-d-23-00022gf01.png?Expires=1717254243&amp;Signature=yqYpqmenhF4Eb0imDtcRqQY847BB21rRaoVKuR4oqObnjVPKLT0Aeqk5t1OqCRVFBngUJ8KCZQQp-~LQdtV4KIjaxSvienKG-BjKjxcdtrtMNY4dvP1-ZAcJ8yTbr9pRPX8fyht9SNQrLYUd79~uBU~ddJ30lfZuMWxeo421mdqVGywP7r1ROiJpcpi~htv2Z31J9pwNKY44YzGbvE9LmangAbzDEHrEdKzVwtstqITjhdXtwHa3IxspX2wemND-g8wf3b2xLSP3xCokrL5bqqgdE6~PqHe4IqE~XtZ3xrYR2FNP1GXipeOtViz0XECy3Zv68ZZTWIssPeyBOVq3LQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwh-d-23-00022gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/4/10.2166_wh.2024.022/1/m_jwh-d-23-00022gf01.png?Expires=1717254243&amp;Signature=yqYpqmenhF4Eb0imDtcRqQY847BB21rRaoVKuR4oqObnjVPKLT0Aeqk5t1OqCRVFBngUJ8KCZQQp-~LQdtV4KIjaxSvienKG-BjKjxcdtrtMNY4dvP1-ZAcJ8yTbr9pRPX8fyht9SNQrLYUd79~uBU~ddJ30lfZuMWxeo421mdqVGywP7r1ROiJpcpi~htv2Z31J9pwNKY44YzGbvE9LmangAbzDEHrEdKzVwtstqITjhdXtwHa3IxspX2wemND-g8wf3b2xLSP3xCokrL5bqqgdE6~PqHe4IqE~XtZ3xrYR2FNP1GXipeOtViz0XECy3Zv68ZZTWIssPeyBOVq3LQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/4/10.2166_wh.2024.022/1/m_jwh-d-23-00022gf01.png?Expires=1717254243&amp;Signature=yqYpqmenhF4Eb0imDtcRqQY847BB21rRaoVKuR4oqObnjVPKLT0Aeqk5t1OqCRVFBngUJ8KCZQQp-~LQdtV4KIjaxSvienKG-BjKjxcdtrtMNY4dvP1-ZAcJ8yTbr9pRPX8fyht9SNQrLYUd79~uBU~ddJ30lfZuMWxeo421mdqVGywP7r1ROiJpcpi~htv2Z31J9pwNKY44YzGbvE9LmangAbzDEHrEdKzVwtstqITjhdXtwHa3IxspX2wemND-g8wf3b2xLSP3xCokrL5bqqgdE6~PqHe4IqE~XtZ3xrYR2FNP1GXipeOtViz0XECy3Zv68ZZTWIssPeyBOVq3LQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwh-d-23-00022gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/4/10.2166_wh.2024.022/1/m_jwh-d-23-00022gf01.png?Expires=1717254243&amp;Signature=yqYpqmenhF4Eb0imDtcRqQY847BB21rRaoVKuR4oqObnjVPKLT0Aeqk5t1OqCRVFBngUJ8KCZQQp-~LQdtV4KIjaxSvienKG-BjKjxcdtrtMNY4dvP1-ZAcJ8yTbr9pRPX8fyht9SNQrLYUd79~uBU~ddJ30lfZuMWxeo421mdqVGywP7r1ROiJpcpi~htv2Z31J9pwNKY44YzGbvE9LmangAbzDEHrEdKzVwtstqITjhdXtwHa3IxspX2wemND-g8wf3b2xLSP3xCokrL5bqqgdE6~PqHe4IqE~XtZ3xrYR2FNP1GXipeOtViz0XECy3Zv68ZZTWIssPeyBOVq3LQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Stream flow forecasting is a crucial aspect of hydrology and water resource management. This study explores stream flow forecasting using two distinct models: the Soil and Water Assessment Tool (SWAT) and a hybrid M5P model tree. The research specifically targets the daily stream flow predictions at the MH Halli gauge stations, located along the Hemvati River in Karnataka, India. A 14-year dataset spanning from 2003 to 2017 is divided into two subsets for model calibration and validation. The SWAT model's performance is evaluated by comparing its predictions to observed stream flow data. Residual time series values resulting from this comparison are then resolved using the M5P model tree. The findings reveal that the hybrid M5P tree model surpasses the SWAT model in terms of various evaluation metrics, including root-mean-square error, coefficient of determination (<em>R</em><sup>2</sup>), Nash–Sutcliffe efficiency, and degree of agreement (d) for the MH Halli stations. In conclusion, this study shows the effectiveness of the hybrid M5P tree model in stream flow forecasting. The research contributes valuable insights into improved water resource management and underscores the importance of selecting appropriate models based on their performance and suitability for specific hydrological forecasting tasks.</p>","PeriodicalId":518003,"journal":{"name":"Journal of Water & Health","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water & Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wh.2024.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image
View largeDownload slide
Abstract Image
View largeDownload slide
Close modal

Stream flow forecasting is a crucial aspect of hydrology and water resource management. This study explores stream flow forecasting using two distinct models: the Soil and Water Assessment Tool (SWAT) and a hybrid M5P model tree. The research specifically targets the daily stream flow predictions at the MH Halli gauge stations, located along the Hemvati River in Karnataka, India. A 14-year dataset spanning from 2003 to 2017 is divided into two subsets for model calibration and validation. The SWAT model's performance is evaluated by comparing its predictions to observed stream flow data. Residual time series values resulting from this comparison are then resolved using the M5P model tree. The findings reveal that the hybrid M5P tree model surpasses the SWAT model in terms of various evaluation metrics, including root-mean-square error, coefficient of determination (R2), Nash–Sutcliffe efficiency, and degree of agreement (d) for the MH Halli stations. In conclusion, this study shows the effectiveness of the hybrid M5P tree model in stream flow forecasting. The research contributes valuable insights into improved water resource management and underscores the importance of selecting appropriate models based on their performance and suitability for specific hydrological forecasting tasks.

SWAT 和混合 M5P 树模型在降雨-径流模拟中的性能比较
查看 largeDownload 幻灯片查看 largeDownload 幻灯片 关闭模态流预报是水文学和水资源管理的一个重要方面。本研究使用两种不同的模型:水土评估工具(SWAT)和混合 M5P 模型树,探讨了河水流量预测。研究特别针对位于印度卡纳塔克邦 Hemvati 河沿岸的 MH Halli 测量站的日流量预测。从 2003 年到 2017 年的 14 年数据集被分为两个子集,用于模型校准和验证。通过将 SWAT 模型的预测结果与观测到的河流流量数据进行比较,对 SWAT 模型的性能进行评估。然后使用 M5P 模型树解决比较得出的残差时间序列值。研究结果表明,混合 M5P 树模型在各种评价指标方面都优于 SWAT 模型,包括均方根误差、判定系数 (R2)、纳什-苏特克利夫效率和 MH Halli 站的吻合度 (d)。总之,本研究显示了混合 M5P 树模型在河流流量预报中的有效性。这项研究为改善水资源管理提供了宝贵的见解,并强调了根据特定水文预报任务的性能和适用性选择适当模型的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信