Wenbo Wan;Zezhu Wang;Zhiyan Wang;Lingchen Gu;Jiande Sun;Qiang Wang
{"title":"Arbitrary-Scale Image Super-Resolution via Degradation Perception","authors":"Wenbo Wan;Zezhu Wang;Zhiyan Wang;Lingchen Gu;Jiande Sun;Qiang Wang","doi":"10.1109/TCI.2024.3393712","DOIUrl":null,"url":null,"abstract":"In recent years, with the rapid development of deep learning, super-resolution research oriented towards arbitrary scale (e.g., arbitrary integer and non-integer scale factors) factors has achieved great success. However, in terms of pixel space, the degradation in the same image at arbitrary scale factors is spatially variable. Similarly, the degradation is variable for different scale factors. In this paper, we propose a method that can adaptively deal with varying degradation at different scale factors, which consists of two parts. The first part, Image Refinement Network (IRN), adopts a dynamic convolution method to deal with different degradations under arbitrary scale factors on a pixel-by-pixel basis. It solves the spatial invariance problem of the ordinary convolution kernel. For well calculating the pixel mapping relationships that change during the super-resolution of arbitary scale factors, we propose a second Module, Super-Resolution Encoding Guidance Module (SREGM). It takes the high-resolution pixel space as a reference frame and uses the modelling results as prior information to better guide the high-resolution reconstruction. Extensive experiments have shown that our method achieves good results in the super-resolution of a single image with an arbitrary scale factor.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"666-676"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10508445/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, with the rapid development of deep learning, super-resolution research oriented towards arbitrary scale (e.g., arbitrary integer and non-integer scale factors) factors has achieved great success. However, in terms of pixel space, the degradation in the same image at arbitrary scale factors is spatially variable. Similarly, the degradation is variable for different scale factors. In this paper, we propose a method that can adaptively deal with varying degradation at different scale factors, which consists of two parts. The first part, Image Refinement Network (IRN), adopts a dynamic convolution method to deal with different degradations under arbitrary scale factors on a pixel-by-pixel basis. It solves the spatial invariance problem of the ordinary convolution kernel. For well calculating the pixel mapping relationships that change during the super-resolution of arbitary scale factors, we propose a second Module, Super-Resolution Encoding Guidance Module (SREGM). It takes the high-resolution pixel space as a reference frame and uses the modelling results as prior information to better guide the high-resolution reconstruction. Extensive experiments have shown that our method achieves good results in the super-resolution of a single image with an arbitrary scale factor.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.