{"title":"Melt strain hardening of polymeric systems filled with solid particles: review and supplementary experimental results","authors":"Helmut Münstedt","doi":"10.1007/s00397-024-01452-0","DOIUrl":null,"url":null,"abstract":"<div><p>Melt strain hardening is an interesting characteristic property of the elongational flow of polymers. While strain hardening of many unmodified polymer melts has been widely discussed, a comprehensive presentation of the influence of particles on this property is missing. Using literature data and own measurements, the effects of solid particles of various geometries are compared. Micro-sized particles generally reduce melt strain hardening and may even lead to strain thinning. This behavior is postulated to be due to shear flow components around the particles and resulting shear thinning of the polymer matrices that reduces the resistance to flow. More complex is the influence of nano-sized fillers and layered silicate nanoparticles, in particular. Weakly exfoliated particles show effects similar to micro-fillers, but for strongly exfoliated silicates distinct strain hardening is observed that increases with decreasing elongational rate. This behavior is particularly pronounced for polymers modified with maleic anhydrides and thought to be related to electrostatic forces between exfoliated platelets of the silicates and polymer molecules hindering molecular motions.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 5","pages":"333 - 343"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-024-01452-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-024-01452-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Melt strain hardening is an interesting characteristic property of the elongational flow of polymers. While strain hardening of many unmodified polymer melts has been widely discussed, a comprehensive presentation of the influence of particles on this property is missing. Using literature data and own measurements, the effects of solid particles of various geometries are compared. Micro-sized particles generally reduce melt strain hardening and may even lead to strain thinning. This behavior is postulated to be due to shear flow components around the particles and resulting shear thinning of the polymer matrices that reduces the resistance to flow. More complex is the influence of nano-sized fillers and layered silicate nanoparticles, in particular. Weakly exfoliated particles show effects similar to micro-fillers, but for strongly exfoliated silicates distinct strain hardening is observed that increases with decreasing elongational rate. This behavior is particularly pronounced for polymers modified with maleic anhydrides and thought to be related to electrostatic forces between exfoliated platelets of the silicates and polymer molecules hindering molecular motions.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."