{"title":"Ploidy inference from single-cell data: application to human and mouse cell atlases.","authors":"Fumihiko Takeuchi, Norihiro Kato","doi":"10.1093/genetics/iyae061","DOIUrl":null,"url":null,"abstract":"Ploidy is relevant to numerous biological phenomena, including development, metabolism, and tissue regeneration. Single-cell RNA-seq and other omics studies are revolutionizing our understanding of biology, yet they have largely overlooked ploidy. This is likely due to the additional assay step required for ploidy measurement. Here, we developed a statistical method to infer ploidy from single-cell ATAC-seq data, addressing this gap. When applied to data from human and mouse cell atlases, our method enabled systematic detection of polyploidy across diverse cell types. This method allows for the integration of ploidy analysis into single-cell studies. Additionally, this method can be adapted to detect the proliferating stage in the cell cycle and copy number variations in cancer cells. The software is implemented as the scPloidy package of the R software and is freely available from CRAN.","PeriodicalId":12706,"journal":{"name":"Genetics","volume":"109 S4 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ploidy is relevant to numerous biological phenomena, including development, metabolism, and tissue regeneration. Single-cell RNA-seq and other omics studies are revolutionizing our understanding of biology, yet they have largely overlooked ploidy. This is likely due to the additional assay step required for ploidy measurement. Here, we developed a statistical method to infer ploidy from single-cell ATAC-seq data, addressing this gap. When applied to data from human and mouse cell atlases, our method enabled systematic detection of polyploidy across diverse cell types. This method allows for the integration of ploidy analysis into single-cell studies. Additionally, this method can be adapted to detect the proliferating stage in the cell cycle and copy number variations in cancer cells. The software is implemented as the scPloidy package of the R software and is freely available from CRAN.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.