{"title":"Osiris gene family defines the cuticle nanopatterns of Drosophila.","authors":"Zhengkuan Sun, Sachi Inagaki, Keita Miyoshi, Kuniaki Saito, Shigeo Hayashi","doi":"10.1093/genetics/iyae065","DOIUrl":null,"url":null,"abstract":"Nanostructures of pores and protrusions in the insect cuticle modify molecular permeability and surface wetting, and help insects sense various environmental cues. However, the cellular mechanisms that modify cuticle nanostructures are poorly understood. Here, we elucidate how insect-specific Osiris family genes are expressed in various cuticle-secreting cells in the Drosophila head during the early stages of cuticle secretion and cover nearly the entire surface of the head epidermis. Furthermore, we demonstrate how each sense organ cell with various cuticular nanostructures expressed a unique combination of Osiris genes. Osiris gene mutations cause various cuticle defects in the corneal nipples and pores of the chemosensory sensilla. Thus, our study emphasizes on the importance of Osiris genes for elucidating cuticle nanopatterning in insects.","PeriodicalId":12706,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae065","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nanostructures of pores and protrusions in the insect cuticle modify molecular permeability and surface wetting, and help insects sense various environmental cues. However, the cellular mechanisms that modify cuticle nanostructures are poorly understood. Here, we elucidate how insect-specific Osiris family genes are expressed in various cuticle-secreting cells in the Drosophila head during the early stages of cuticle secretion and cover nearly the entire surface of the head epidermis. Furthermore, we demonstrate how each sense organ cell with various cuticular nanostructures expressed a unique combination of Osiris genes. Osiris gene mutations cause various cuticle defects in the corneal nipples and pores of the chemosensory sensilla. Thus, our study emphasizes on the importance of Osiris genes for elucidating cuticle nanopatterning in insects.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.