Catching a robber on a random k-uniform hypergraph

Joshua Erde, Mihyun Kang, Florian Lehner, Bojan Mohar, Dominik Schmid
{"title":"Catching a robber on a random k-uniform hypergraph","authors":"Joshua Erde, Mihyun Kang, Florian Lehner, Bojan Mohar, Dominik Schmid","doi":"10.4153/s0008414x24000270","DOIUrl":null,"url":null,"abstract":"<p>The game of <span>Cops and Robber</span> is usually played on a graph, where a group of cops attempt to catch a robber moving along the edges of the graph. The <span>cop number</span> of a graph is the minimum number of cops required to win the game. An important conjecture in this area, due to Meyniel, states that the cop number of an <span>n</span>-vertex connected graph is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240425084516565-0876:S0008414X24000270:S0008414X24000270_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$O(\\sqrt {n})$</span></span></img></span></span>. In 2016, Prałat and Wormald showed that this conjecture holds with high probability for random graphs above the connectedness threshold. Moreover, Łuczak and Prałat showed that on a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240425084516565-0876:S0008414X24000270:S0008414X24000270_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\log $</span></span></img></span></span>-scale the cop number demonstrates a surprising <span>zigzag</span> behavior in dense regimes of the binomial random graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240425084516565-0876:S0008414X24000270:S0008414X24000270_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$G(n,p)$</span></span></img></span></span>. In this paper, we consider the game of Cops and Robber on a hypergraph, where the players move along hyperedges instead of edges. We show that with high probability the cop number of the <span>k</span>-uniform binomial random hypergraph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240425084516565-0876:S0008414X24000270:S0008414X24000270_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G^k(n,p)$</span></span></img></span></span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240425084516565-0876:S0008414X24000270:S0008414X24000270_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$O\\left (\\sqrt {\\frac {n}{k}}\\, \\log n \\right )$</span></span></img></span></span> for a broad range of parameters <span>p</span> and <span>k</span> and that on a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240425084516565-0876:S0008414X24000270:S0008414X24000270_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\log $</span></span></img></span></span>-scale our upper bound on the cop number arises as the minimum of <span>two</span> complementary zigzag curves, as opposed to the case of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240425084516565-0876:S0008414X24000270:S0008414X24000270_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$G(n,p)$</span></span></img></span></span>. Furthermore, we conjecture that the cop number of a connected <span>k</span>-uniform hypergraph on <span>n</span> vertices is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240425084516565-0876:S0008414X24000270:S0008414X24000270_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$O\\left (\\sqrt {\\frac {n}{k}}\\,\\right )$</span></span></img></span></span>.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The game of Cops and Robber is usually played on a graph, where a group of cops attempt to catch a robber moving along the edges of the graph. The cop number of a graph is the minimum number of cops required to win the game. An important conjecture in this area, due to Meyniel, states that the cop number of an n-vertex connected graph is Abstract Image$O(\sqrt {n})$. In 2016, Prałat and Wormald showed that this conjecture holds with high probability for random graphs above the connectedness threshold. Moreover, Łuczak and Prałat showed that on a Abstract Image$\log $-scale the cop number demonstrates a surprising zigzag behavior in dense regimes of the binomial random graph Abstract Image$G(n,p)$. In this paper, we consider the game of Cops and Robber on a hypergraph, where the players move along hyperedges instead of edges. We show that with high probability the cop number of the k-uniform binomial random hypergraph Abstract Image$G^k(n,p)$ is Abstract Image$O\left (\sqrt {\frac {n}{k}}\, \log n \right )$ for a broad range of parameters p and k and that on a Abstract Image$\log $-scale our upper bound on the cop number arises as the minimum of two complementary zigzag curves, as opposed to the case of Abstract Image$G(n,p)$. Furthermore, we conjecture that the cop number of a connected k-uniform hypergraph on n vertices is Abstract Image$O\left (\sqrt {\frac {n}{k}}\,\right )$.

在随机 k-uniform 超图上抓捕劫匪
警察抓强盗 "游戏通常在一个图形上进行,一群警察试图抓住沿图形边缘移动的强盗。图的警察数是赢得游戏所需的最少警察数。该领域的一个重要猜想由 Meyniel 提出,即 n 个顶点相连图的警察数为 $O(\sqrt {n})$。2016 年,Prałat 和 Wormald 证明,对于连通性阈值以上的随机图,这一猜想大概率成立。此外,Łuczak 和 Prałat 还表明,在二项式随机图 $G(n,p)$ 的密集状态下,在 $log $ 的尺度上,cop 数表现出令人惊讶的之字形行为。在本文中,我们考虑的是超图上的 "警察与强盗 "游戏,游戏者沿着超边而不是边移动。我们证明,在广泛的参数 p 和 k 范围内,k-均匀二叉随机超图 $G^k(n,p)$ 的警察数很有可能是 $O\left (\sqrt {\frac {n}{k}}\, \log n \right )$,并且在 $\log $ 尺度上,我们的警察数上限是两条互补之字形曲线的最小值,而不是 $G(n,p)$的情况。此外,我们猜想在 n 个顶点上连接 k 个均匀超图的 cop 数是 $O\left (\sqrt {frac {n}{k}}\,\right )$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信