{"title":"Behaviour of Transverse Wave at an Imperfectly Corrugated Interface of a Functionally Graded Structure","authors":"A. Akshaya, S. Kumar, K. Hemalatha","doi":"10.3103/S1541308X24700067","DOIUrl":null,"url":null,"abstract":"<p>An investigation of the transverse wave has been carried out in a structure of functionally graded material. The structure consists of layer and a semi-infinite medium. The layer is composed of a functionally graded magneto-electro-elastic material with a quadratic gradedness parameter. The semi-infinite medium is composed of functionally graded piezoelectric with a quadratic gradedness parameter. The interface between the layer and half-space is taken as loosely bonded and corrugated, whereas the upper boundary is assumed to be stress-free and corrugated. Moreover, the solutions for layer and half-space are obtained using the basic variable-separable method to reduce the partial differential equation to the ordinary differential equation. And ordinary differential equation solutions are obtained by using the WKB approximation technique. The solutions with boundary conditions lead to dispersion relations in the determinant form of two cases: electrically open and short. To know the impact of the parameter involved, a particular model consists of BaTiO<sub>3</sub>–CoFe<sub>2</sub>O<sub>4</sub> magneto-electro-elastic material layer and BaTiO<sub>3</sub> piezoelectric semi-infinite medium have been taken. Graphs of phase velocity versus wave number are plotted, which interpret the numerical outcomes physically.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"32 2","pages":"117 - 134"},"PeriodicalIF":1.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Phenomena","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1541308X24700067","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An investigation of the transverse wave has been carried out in a structure of functionally graded material. The structure consists of layer and a semi-infinite medium. The layer is composed of a functionally graded magneto-electro-elastic material with a quadratic gradedness parameter. The semi-infinite medium is composed of functionally graded piezoelectric with a quadratic gradedness parameter. The interface between the layer and half-space is taken as loosely bonded and corrugated, whereas the upper boundary is assumed to be stress-free and corrugated. Moreover, the solutions for layer and half-space are obtained using the basic variable-separable method to reduce the partial differential equation to the ordinary differential equation. And ordinary differential equation solutions are obtained by using the WKB approximation technique. The solutions with boundary conditions lead to dispersion relations in the determinant form of two cases: electrically open and short. To know the impact of the parameter involved, a particular model consists of BaTiO3–CoFe2O4 magneto-electro-elastic material layer and BaTiO3 piezoelectric semi-infinite medium have been taken. Graphs of phase velocity versus wave number are plotted, which interpret the numerical outcomes physically.
期刊介绍:
Physics of Wave Phenomena publishes original contributions in general and nonlinear wave theory, original experimental results in optics, acoustics and radiophysics. The fields of physics represented in this journal include nonlinear optics, acoustics, and radiophysics; nonlinear effects of any nature including nonlinear dynamics and chaos; phase transitions including light- and sound-induced; laser physics; optical and other spectroscopies; new instruments, methods, and measurements of wave and oscillatory processes; remote sensing of waves in natural media; wave interactions in biophysics, econophysics and other cross-disciplinary areas.