Schauder estimates for equations with cone metrics, II

IF 1.8 1区 数学 Q1 MATHEMATICS
Bin Guo, Jian Song
{"title":"Schauder estimates for equations with cone metrics, II","authors":"Bin Guo, Jian Song","doi":"10.2140/apde.2024.17.757","DOIUrl":null,"url":null,"abstract":"<p>We continue our work on the linear theory for equations with conical singularities. We derive interior Schauder estimates for linear elliptic and parabolic equations with a background Kähler metric of conical singularities along a divisor of simple normal crossings. As an application, we prove the short-time existence of the conical Kähler–Ricci flow with conical singularities along a divisor with simple normal crossings. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.757","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We continue our work on the linear theory for equations with conical singularities. We derive interior Schauder estimates for linear elliptic and parabolic equations with a background Kähler metric of conical singularities along a divisor of simple normal crossings. As an application, we prove the short-time existence of the conical Kähler–Ricci flow with conical singularities along a divisor with simple normal crossings.

具有锥度度量的方程的 Schauder 估计数,II
我们继续研究具有圆锥奇点的方程的线性理论。我们推导了线性椭圆方程和抛物方程的内部 Schauder 估计,这些方程的背景是沿着简单法线交叉的分部存在锥形奇点的 Kähler 度量。作为应用,我们证明了沿简单法线交叉的分部具有圆锥奇点的圆锥 Kähler-Ricci 流的短时存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信