Spectral gap for obstacle scattering in dimension 2

IF 1.8 1区 数学 Q1 MATHEMATICS
Lucas Vacossin
{"title":"Spectral gap for obstacle scattering in dimension 2","authors":"Lucas Vacossin","doi":"10.2140/apde.2024.17.1019","DOIUrl":null,"url":null,"abstract":"<p>We study the problem of scattering by several strictly convex obstacles, with smooth boundary and satisfying a noneclipse condition. We show, in dimension 2 only, the existence of a spectral gap for the meromorphic continuation of the Laplace operator outside the obstacles. The proof of this result relies on a reduction to an <span>open hyperbolic quantum map</span>, achieved by Nonnenmacher et al. (<span>Ann. of</span>\n<span>Math.</span><span> </span><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math>\n<span>179</span>:1 (2014), 179–251). In fact, we obtain a spectral gap for this type of object, which also has applications in potential scattering. The second main ingredient of this article is a fractal uncertainty principle. We adapt the techniques of Dyatlov et al. (<span>J. Amer. Math. Soc. </span><span>35</span>:2 (2022), 361–465) to apply this fractal uncertainty principle in our context. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"244 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1019","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of scattering by several strictly convex obstacles, with smooth boundary and satisfying a noneclipse condition. We show, in dimension 2 only, the existence of a spectral gap for the meromorphic continuation of the Laplace operator outside the obstacles. The proof of this result relies on a reduction to an open hyperbolic quantum map, achieved by Nonnenmacher et al. (Ann. of Math. (2) 179:1 (2014), 179–251). In fact, we obtain a spectral gap for this type of object, which also has applications in potential scattering. The second main ingredient of this article is a fractal uncertainty principle. We adapt the techniques of Dyatlov et al. (J. Amer. Math. Soc. 35:2 (2022), 361–465) to apply this fractal uncertainty principle in our context.

第 2 维障碍物散射的光谱间隙
我们研究了几个严格凸面障碍物的散射问题,这些障碍物边界光滑,满足非椭圆条件。我们证明,仅在维度 2 中,拉普拉斯算子在障碍物外的离谱延续存在谱隙。这一结果的证明依赖于Nonnenmacher等人对开放双曲量子映射的还原(Ann. ofMath. (2)179:1 (2014), 179-251)。事实上,我们得到了这类对象的谱隙,这在势散射中也有应用。本文的第二个主要内容是分形不确定性原理。我们采用了 Dyatlov 等人的技术(J. Amer.Math.35:2 (2022), 361-465)的技术,将分形不确定性原理应用到我们的研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信