A nearly-$4\log n$ depth lower bound for formulas with restriction on top

Hao Wu
{"title":"A nearly-$4\\log n$ depth lower bound for formulas with restriction on top","authors":"Hao Wu","doi":"arxiv-2404.15613","DOIUrl":null,"url":null,"abstract":"One of the major open problems in complexity theory is to demonstrate an\nexplicit function which requires super logarithmic depth, a.k.a, the\n$\\mathbf{P}$ versus $\\mathbf{NC^1}$ problem. The current best depth lower bound\nis $(3-o(1))\\cdot \\log n$, and it is widely open how to prove a super-$3\\log n$\ndepth lower bound. Recently Mihajlin and Sofronova (CCC'22) show if considering\nformulas with restriction on top, we can break the $3\\log n$ barrier. Formally,\nthey prove there exist two functions $f:\\{0,1\\}^n \\rightarrow\n\\{0,1\\},g:\\{0,1\\}^n \\rightarrow \\{0,1\\}^n$, such that for any constant\n$0<\\alpha<0.4$ and constant $0<\\epsilon<\\alpha/2$, their XOR composition\n$f(g(x)\\oplus y)$ is not computable by an AND of $2^{(\\alpha-\\epsilon)n}$\nformulas of size at most $2^{(1-\\alpha/2-\\epsilon)n}$. This implies a modified\nversion of Andreev function is not computable by any circuit of depth\n$(3.2-\\epsilon)\\log n$ with the restriction that top $0.4-\\epsilon$ layers only\nconsist of AND gates for any small constant $\\epsilon>0$. They ask whether the\nparameter $\\alpha$ can be push up to nearly $1$ thus implying a nearly-$3.5\\log\nn$ depth lower bound. In this paper, we provide a stronger answer to their question. We show there\nexist two functions $f:\\{0,1\\}^n \\rightarrow \\{0,1\\},g:\\{0,1\\}^n \\rightarrow\n\\{0,1\\}^n$, such that for any constant $0<\\alpha<2-o(1)$, their XOR composition\n$f(g(x)\\oplus y)$ is not computable by an AND of $2^{\\alpha n}$ formulas of\nsize at most $2^{(1-\\alpha/2-o(1))n}$. This implies a $(4-o(1))\\log n$ depth\nlower bound with the restriction that top $2-o(1)$ layers only consist of AND\ngates. We prove it by observing that one crucial component in Mihajlin and\nSofronova's work, called the well-mixed set of functions, can be significantly\nsimplified thus improved. Then with this observation and a more careful\nanalysis, we obtain these nearly tight results.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.15613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the major open problems in complexity theory is to demonstrate an explicit function which requires super logarithmic depth, a.k.a, the $\mathbf{P}$ versus $\mathbf{NC^1}$ problem. The current best depth lower bound is $(3-o(1))\cdot \log n$, and it is widely open how to prove a super-$3\log n$ depth lower bound. Recently Mihajlin and Sofronova (CCC'22) show if considering formulas with restriction on top, we can break the $3\log n$ barrier. Formally, they prove there exist two functions $f:\{0,1\}^n \rightarrow \{0,1\},g:\{0,1\}^n \rightarrow \{0,1\}^n$, such that for any constant $0<\alpha<0.4$ and constant $0<\epsilon<\alpha/2$, their XOR composition $f(g(x)\oplus y)$ is not computable by an AND of $2^{(\alpha-\epsilon)n}$ formulas of size at most $2^{(1-\alpha/2-\epsilon)n}$. This implies a modified version of Andreev function is not computable by any circuit of depth $(3.2-\epsilon)\log n$ with the restriction that top $0.4-\epsilon$ layers only consist of AND gates for any small constant $\epsilon>0$. They ask whether the parameter $\alpha$ can be push up to nearly $1$ thus implying a nearly-$3.5\log n$ depth lower bound. In this paper, we provide a stronger answer to their question. We show there exist two functions $f:\{0,1\}^n \rightarrow \{0,1\},g:\{0,1\}^n \rightarrow \{0,1\}^n$, such that for any constant $0<\alpha<2-o(1)$, their XOR composition $f(g(x)\oplus y)$ is not computable by an AND of $2^{\alpha n}$ formulas of size at most $2^{(1-\alpha/2-o(1))n}$. This implies a $(4-o(1))\log n$ depth lower bound with the restriction that top $2-o(1)$ layers only consist of AND gates. We prove it by observing that one crucial component in Mihajlin and Sofronova's work, called the well-mixed set of functions, can be significantly simplified thus improved. Then with this observation and a more careful analysis, we obtain these nearly tight results.
上有限制的公式的近$4/log n$ 深度下限
复杂性理论中的一个主要公开问题是证明一个需要超对数深度的显式函数,也就是$\mathbf{P}$与$\mathbf{NC^1}$问题。目前最好的深度下界是 $(3-o(1))\cdot \log n$,如何证明一个超 3/log n$ 深度的下界是一个广泛的未知数。最近,Mihajlin 和 Sofronova(CCC'22)证明,如果考虑到公式顶端的限制,我们就能打破 3/log n$ 的障碍。形式上,他们证明存在两个函数 $f:\{0,1\}^n\rightarrow\{0,1\},g:\{0,1\}^n\rightarrow\{0,1\}^n$,这样对于任意常数$00$.他们询问参数 $\alpha$ 是否能被推高到近 1$,从而意味着一个近$3.5\logn$的深度下限。在本文中,我们为他们的问题提供了一个更有力的答案。我们证明了存在两个函数 $f:\{0,1\}^n \rightarrow \{0,1\},g:\对于任意常数$0<α<2-o(1)$,它们的XOR组合$f(g(x)\oplus y)$是无法通过大小至多为2^{(1-\alpha/2-o(1))n}$的2^{alpha n}$公式的AND来计算的。这就意味着一个$(4-o(1))/log n$的深度下限,限制条件是最顶层的2-o(1)$层只能由AND门组成。我们通过观察发现,米哈伊林和索夫罗诺娃工作中的一个关键部分,即混合函数集,可以大大简化,从而得到改进,从而证明了这一点。然后,通过这一观察和更仔细的分析,我们得到了这些近乎严密的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信